
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

SOLVING MULTI-VARIATE POLYNOMIAL EQUATIONS
IN A FINITE FIELD

by

Natalie Vanatta

June 2013

Dissertation Supervisor: David R. Canright

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD–MM–YYYY)2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

30–5–2013 Dissertation 2009-02-01—2013-06-01

Solving Multi-variate Polynomial Equations in a Finite Field

Natalie Vanatta

Naval Postgraduate School
Monterey, CA 93943

Department of the Army

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

Solving large systems of multivariate polynomial equations is an active area of mathematical research, as these polynomials
are used in many fields of science. The objective of this research is to advance the development of algebraic methods to attack
the mathematical foundations of modern-day encryption methods, which can be modeled as a system of multivariate
polynomial equations over a finite field. Our techniques overcome the limitations of previous methods. Additionally, a model
is proposed to estimate the time required to solve large systems with our methods. All of these elements were tested
successfully on AES and its predecessor, Square. The results showed our techniques to be comparable with a brute force
technique. To the best of our knowledge, no other purely algebraic attack on AES has been shown to be this efficient.

Finite Fields; AES; MRHS; multi-link; multi-agree; Square

Unclassified Unclassified Unclassified UU 281

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

SOLVING MULTI-VARIATE POLYNOMIAL EQUATIONS IN A FINITE FIELD

Natalie Vanatta
Major, United States Army

B.E., Stevens Institute of Technology, 2001
M.S., Stevens Institute of Technology, 2001

M.S., Naval Postgraduate School, 2007
Submitted in partial fulfillment of the

requirements for the degree of
DOCTOR OF PHILOSOPHY IN APPLIED MATHEMATICS

from the
NAVAL POSTGRADUATE SCHOOL

June 2013

Author: Natalie Vanatta

David R. Canright
Associate Professor of
Applied Mathematics
Dissertation Advisor

Jon T. Butler Håvard Raddum
Distinguished Professor of Researcher
Electrical and Computer University of Bergen
Engineering

Craig W. Rasmussen Pantelimon Stănică
Professor of Applied Professor of Applied
Mathematics Mathematics

Approved by: Carlos F. Borges
Chair, Department of Applied Mathematics

Approved by: O. Douglas Moses
Vice Provost for Academic Affairs

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Solving large systems of multivariate polynomial equations is an active area of mathematical
research, as these polynomials are used in many fields of science. The objective of this research
is to advance the development of algebraic methods to attack the mathematical foundations of
modern-day encryption methods, which can be modeled as a system of multivariate polynomial
equations over a finite field. Our techniques overcome the limitations of previous methods.
Additionally, a model is proposed to estimate the time required to solve large systems with our
methods. All of these elements were tested successfully on AES and its predecessor, Square.
The results showed our techniques to be comparable with a brute force technique. To the best
of our knowledge, no other purely algebraic attack on AES has been shown to be this efficient.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Problem Background . 2

1.2 Overview . 4

2 Background 5
2.1 Algebraic Background . 5

2.2 Graph Theoretic Background . 9

2.3 Cryptographic Background . 11

3 Advanced Encryption Standard (AES) 13
3.1 AES Structure . 14

3.2 Representation . 21

3.3 Solving Methods . 23

4 MRHS 27
4.1 Representation . 27

4.2 Agreeing . 28

4.3 Gluing . 31

4.4 Extracting . 32

4.5 Guessing . 33

4.6 Experimental Results. 34

5 Extending MRHS Methods 35
5.1 Representation . 35

5.2 Notation . 36

5.3 Graphical Representation . 41

5.4 Links . 45

5.5 Multi-Agreeing . 47

vii

6 Results 59
6.1 Results of New Method . 59

6.2 Modeling Large Variants of AES . 81

6.3 Other AES Results. 89

6.4 Multiple Plaintext/Ciphertext Pairs 90

7 Other Cryptosystems 97
7.1 Square . 97

7.2 Shark . 108

7.3 Anubis . 110

8 Conclusion 113
8.1 Contributions . 113

8.2 Future Research . 114

Appendices

A Pseudo-Code for Multi-agree 117

B Agreeing Order for A44e 119

C AES MRHS Equation Creation Code 127

D AES MRHS Algorithm Code 151

E Square MRHS Equation Creation Code 227

F Square MRHS Algorithm Code 251

List of References 256

Initial Distribution List 261

viii

List of Figures

Figure 2.1 An undirected graph. 10

Figure 2.2 A directed graph. 10

Figure 2.3 A bipartite graph. 10

Figure 2.4 A complete bipartite graph. 10

Figure 3.1 State array of AES. From [1]. 15

Figure 3.2 Shift Rows operation (s=initial array, s’=after array). From [1]. 17

Figure 3.3 Mix Columns operation on each column of the state array. From [1]. . 17

Figure 3.4 Start of the AES key schedule algorithm. From [2]. 19

Figure 3.5 AES key schedule algorithm. From [2]. 20

Figure 3.6 Generic representation of a function. 22

Figure 5.1 AES; RHS agreement. 42

Figure 5.2 Graphical representation of the solution of a system with 12 symbols. . 42

Figure 5.3 What we hoped to find in 3-agree process. 44

Figure 5.4 What we found in 3-agree process. 44

Figure 5.5 Determine root of the agreeing tree. 53

Figure 5.6 Step 1 of agreeing tree. 54

Figure 5.7 Step 2 of agreeing tree. 54

Figure 5.8 Step 3 of agreeing tree. 55

Figure 5.9 Step 4 of agreeing tree. 55

Figure 6.1 Probability tree for 3224. 85

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 3.1 Official AES finalist results. After [3]. 14

Table 3.2 Results of best attack on AES. 25

Table 4.1 Number of guesses to solve AES for various thresholds (θ). 34

Table 5.1 Sample of AES solve times. 50

Table 5.2 Example of strategy #1. 51

Table 5.3 Example of strategy #2. 52

Table 5.4 n44e AES system size. 57

Table 6.1 2144 links - equations mapping. 59

Table 6.2 2144 links - variables mapping. 60

Table 6.3 Agreeing order for 3144. 62

Table 6.4 n14e AES results. 62

Table 6.5 2244 links - equations mapping. 64

Table 6.6 n24e AES results. 65

Table 6.7 3414 links - equations mapping. 66

Table 6.8 n41e AES results. 67

Table 6.9 Portion of the 3424 links - equations mapping. 68

Table 6.10 n42e AES results. 70

Table 6.11 3224 links - equations mapping. 70

Table 6.12 Agreeing order for 3224. 72

Table 6.13 n22e AES results. 72

Table 6.14 n44e AES times. 73

xi

Table 6.15 3444 links - equations mapping (Part I). 74

Table 6.16 3444 links - equations mapping (Part II). 75

Table 6.17 3444 links - equations mapping (Part III). 76

Table 6.18 3444 links - equations mapping (Part IV). 77

Table 6.19 3444 links - equations mapping (Part V). 78

Table 6.20 3444 links - equations mapping (Part VI). 79

Table 6.21 3444 links - equations mapping (Part VII). 79

Table 6.22 3444 links - equations mapping (Part VIII). 80

Table 6.23 Sample of multi-agree times. 82

Table 6.24 Values for AES time unknowns. 83

Table 6.25 Factors for link model (organized by shape). 86

Table 6.26 Estimated factors for n248 and n428 AES variants. 87

Table 6.27 Estimated solution times for n248 and n428 AES variants. 88

Table 6.28 Estimated factors for n444 and n448 AES variants. 88

Table 6.29 Upper bounds for solution times for n444 and n448 AES variants. . . . 89

Table 6.30 Mapping of multiple pt/ct links. 92

Table 6.31 Agreeing order for two pairs of 3224. 93

Table 6.32 More efficient agreeing order for 2 pairs of 3224. 95

Table 7.1 Square 4144 links - equations mapping. 102

Table 7.2 Square n14e MRHS representation stats. 102

Table 7.3 Portion of the Square 4424 links - equations mapping. 103

Table 7.4 Portion of the Square 5424 links - equations mapping. 104

Table 7.5 Square n42e MRHS representation stats. 105

Table 7.6 Square 4224 links - equations mapping. 105

xii

Table 7.7 Agreeing order for Square 4224. 106

Table 7.8 Square n22e MRHS representation stats. 106

Table 7.9 Square n44e MRHS representation stats. 107

Table 7.10 Values for Square model unknowns. 108

Table 7.11 Factors for Square link model (organized by shape). 109

Table 7.12 Estimated solution times for large Square variants. 110

Table B.1 Agreeing order for A44e. 119

Table B.1 Agreeing order for A44e. 120

Table B.1 Agreeing order for A44e. 121

Table B.1 Agreeing order for A44e. 122

Table B.1 Agreeing order for A44e. 123

Table B.1 Agreeing order for A44e. 124

Table B.1 Agreeing order for A44e. 125

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

List of Acronyms and Abbreviations

AES Advanced Encryption Standard
DES Data Encryption Standard
FIPS Federal Information Processing Standards
MDS Maximal Distance Separable
MQ Multivariate Quadratic System of Equations
MRHS Multiple Right Hand Sides
NIST National Institute of Standards and Technology
NPS Naval Postgraduate School
NSA National Security Agency
SPN Substitution Permutation Network
USG United States Government
XL eXtended Linearization
XOR Exclusive OR (logical operation)
XSL eXtended Sparse Linearization

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

Acknowledgements

This is my opportunity to offer a few words of thanks to those people who have been helpful, or
at least extremely tolerant, during the gestation of this work. There is not enough space on the
page to properly express gratitude for their enormous help, understanding, and support. I can
only hope that each of you will realize how important you were, and you are, to me.

I am ever grateful to my advisor, Dr. Canright. I am thankful for his patience, guidance, and
unwavering support during this research. Thanks also go to my committee members—Dr. But-
ler, Dr. Raddum, Dr. Rasmussen, and Dr. Stănică—for their guidance and support through this
process.

I am deeply thankful for the support of my family and friends. To my parents—for their con-
tinuous support throughout my whole life. It is fair to say that without them, I would not have
become who I am today. To some of my best friends in the world who are family to me—the
Siltons and the Fletchers. Your loving support, unrelenting faith that I would eventually finish,
and always available shoulders to lean on were priceless.

I am deeply appreciative to my Army mentors—COL Greg Conti, COL Charles Grindle, COL
Charles Rimbey, and LTC Brian Lunday. Whether it was advice about this body of work or my
career path or just life in general, you all have always made a difference and shown me the path
to success. Thank you.

Finally, to my many readers of this dissertation—a heartfelt thanks. Whether you were a math-
ematician or a historian, you gave outstanding advice, and someday, I truly WILL learn how to
avoid passive voice in my narration.

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

CHAPTER 1:

Introduction

The need to deliver secure information pervades society and daily life. Since Julius Caesar’s
time, leaders have attempted to protect important communications from being read by unau-
thorized people or governments. Caesar is credited with the first use of a cipher for military
purposes when he sent a message to the besieged Cicero, who was on the verge of surrender.
Caesar’s best known cipher was one in which he replaced each letter by the letter three places
down the alphabet. Thankfully, the design of cryptosystems in the modern age has significantly
advanced from the days of the Roman Empire. Today, cryptosystems are systematic in na-
ture; based on hard mathematical problems; and tested, probed and analyzed using significant
computing power before being utilized. The result is a secure system which can both encrypt
messages and decrypt the result.

The adjective “secure” in the crypto arena does not refer to absolute security but to computa-
tional security. The subtle difference is that modern cryptosystems are not unbreakable but are
practically impossible to mount a practical attack against given today’s computing power. The
most obvious type of attack is a brute force attack. This occurs when an adversary attempts
every possible key in the cryptosystem in order to determine which one was used to encrypt
a certain message. Many modern cryptosystems have 2256 possible keys. To test all of these
possibilities, all the known computing resources in the world would require more time than the
remaining life of the universe. These systems are therefore considered impractical to break and
are accepted as secure.

Within the cryptography community, the governmental designation of a cryptosystem as secure
acts as a red cape to a bull—a challenge to attack. Unlike a bull, which seeks to gore the matador
in a physical attack, analysts strive to find the key in a cryptologic attack.

Auguste Kerckhoffs, the 19th century Dutch linguist and cryptographer, wrote the defining work
La Cryptographie Militaire in 1883. He had studied the most modern cryptosystems of the
time and produced six enduring principles of cryptography. The most famous [4] is that “The
security of a cryptosystem must not depend on keeping secret the crypto-algorithm. The security
depends only on keeping secret the key.” Therefore, we should assume that the enemy knows
everything about the implementation of our cryptosystem, but as long as he does not have access

1

to the key, our communications are safe. Typically, attackers are assumed to have access to
plaintext and its corresponding ciphertext generated by the algorithm’s implementation (referred
to as a plaintext-ciphertext attack). Therefore, an attacker’s efforts are focused on deducing the
only secret information—the key.

Over the years, a multitude of attack techniques (linear and differential cryptanalysis to name
two recent ones) have been developed in an effort to break modern cryptosystems. The sys-
tems broken by these methods were largely abandoned in favor of ones more resistant to these
known attacks. That begs the question, what is next? A portion of the cryptographic com-
munity [5] has turned to the concept of algebraic attacks. An algebraic attack focuses on the
mathematical underpinnings of the encryption algorithm. It seeks to model the cryptosystem
as a system of equations to be solved in order to obtain the key. This idea of transforming a
cipher into a system of equations is not new. Claude Shannon [6] remarked on it in his seminal
1946 paper entitled Communication Theory of Secrecy Systems [7]: “solving a certain [crypto]
system requires at least as much work as solving a system of simultaneous equations in a large
number of unknowns, of a complex type.” Claude Shannon is considered the father of the elec-
tronic communications age as he developed both the mathematical theory of communication
and information theory in the 1930s and 1940s.

Given that Shannon’s insight occurred in the 1940s, why have not these various algebraic attacks
become commonplace? The answer is that these systems of equations are incredibly difficult to
solve given the lack of sufficiently fast computers and efficient computer algebra techniques of
the time. Now that we have significantly improved these resources, algebra has become a very
active area of research within the field of cryptology in the last two decades.

1.1 Problem Background
Solving large systems of multivariate polynomial equations (as seen in Equation 1.1) is an active
area of mathematical research. Polynomials are widely used in the sciences; for example they
arise in robotics, coding theory, optimization, mathematical biology, computer vision, game
theory, statistics, economics, physics, and many others. Unfortunately, there currently exists
only a small suite of mathematical tools to find exact solutions for these systems. Additionally,
many of these tools are limited in scope and require extensive resources (time and memory) to
function. Current algebraic methods to solve these non-linear systems include Gröbner basis,
linearization, F4, and F5. These general methods are discussed in Section 3.3.

2

A =

l1(x1, ...xn) = 0

...
lm(x1, ...xn) = 0

(1.1)

The many intriguing natural phenomenon and engineering marvels that are modeled with these
equations explains why the search for a solution is so interesting to researchers. If the li consist
of only quadratic, linear, and constant terms, Equation 1.1 is known as the MQ problem to
mathematicians. MQ is shorthand for the problem of finding a solution to the Multivariate
simultaneous system of Quadratic equations.

The MQ problem belongs to the set of NP-hard problems. The term Non-deterministic Polynomial-
time Hard (NP Hard) refers to a complexity class of decision problems that are intrinsically
harder than those that can be solved with a nondeterministic Turing machine in polynomial
time. In simpler terms, it is a set of problems in which computers can not “find” a solution
easily but can “check” the solution easily (i.e., in polynomial time). Since many people believe
P 6= NP, it is widely thought that no polynomial time algorithm exists for the MQ problem.

In 2006 researchers Raddum and Semaev [8] created a new method to solve very specific sys-
tems of multivariate polynomial equations. Their method crafts multiple right-hand side equa-
tions (MRHS) to represent the system and then executes new processes to determine the so-
lution. These processes are called linking, agreeing, gluing, guessing, and extracting. This
method is described in Section 3.

This body of work details my journey of discovery and exploration into the world of algebraic
cryptology. We extend their original ideas by crafting the MRHS system with field equations
instead of bit equations. This improvement greatly reduces the number of variables and equa-
tions within the system. It also helps clarify the underlying structure of the system so that it
can be used against itself. We also extend the ideas of linking and agreeing from pairs of equa-
tions (in Raddum’s work) to arbitrary larger collections of equations. These new methods are
described in Section 4. We have had success in applying these new tools to our specific system
of multivariate polynomial equations, as seen in Section 5.

3

1.2 Overview
The remainder of the dissertation is organized as follows. Chapter 2 contains a brief overview
of key algebraic, graph theoretic, and cryptologic concepts that the reader should be familiar
with in order to best understand this body of work. Chapter 3 covers the creation, design
methodology, and complete description of our target cryptosystem, the Advanced Encryption
Standard (AES). Chapter 4 presents Raddum and Semaev’s MRHS algorithm, examples of
its key processes, and their computational results on attacking AES. Chapter 5 discusses our
extensions of the original MRHS algorithm. Chapter 6 presents the experimental results from
applying our method to AES. Chapter 7 showcases the new algorithm’s application on other,
similar block ciphers to AES with initial results. Chapter 8 covers future work and conclusions.

4

CHAPTER 2:

Background

2.1 Algebraic Background
In this section, some algebraic definitions and basics are discussed as they pertain to this re-
search. For a more detailed treatment, consult an algebra book such as [9].

The group is the fundamental building block of algebra. Once a group is established, properties
are added in order to create a ring, then an integral domain, then a field. This section traces that
“creation” to a Galois Field with examples provided to assist the reader’s understanding.

A group, G, is a set of elements with a binary operation (called addition) such that for all a,b in
R the following axioms hold:

1. Closure: If a and b belong to G, then a+b is also in G.
2. Associativity: a+(b+ c) = (a+b)+ c ∀ a,b,c in G.
3. Identity: ∃e ∈ G such that a+ e = e+a = a ∀ a ∈ G.
4. Inverse: ∀ a ∈ G, ∃b ∈ G such that a+b = b+a = e.

A group is designated as an abelian group if the addition operation is also commutative. Namely,
that a+b = b+a ∀ a,b in G.

A ring, R, is a set of elements with two binary operations (called addition and multiplication)
such that for all a,b,c in R the following axioms hold:

1. R is an abelian group with respect to addition.
2. Closure under multiplication: If a and b belong to R, then ab is also in R.
3. Multiplication is associative: a(bc) = (ab)c ∀ a,b,c in R.
4. Left Distributive: a(b+ c) = ab+ac ∀ a,b,c in R.
5. Right Distributive: (b+ c)a = ba+ ca ∀ a,b,c in R.

A ring is designated as a commutative ring if the multiplication operation is also commutative.
Namely, that ab = ba ∀ a,b in R.

An integral domain, D, is a set of elements with two binary operations (called addition and
multiplication) such that for all a,b,c in D the following axioms hold:

5

1. D is a commutative ring.
2. Multiplicative identity: ∃ an element 1 ∈ D such that a1 = 1a = a ∀ a ∈ D.
3. No zero divisors: If a,b in D and ab = 0, then either a = 0 or b = 0.

A field F is a set of elements with two binary operations (called addition and multiplication)
such that for all a,b,c in F the following axioms hold:

1. F is an integral domain.
2. Multiplicative inverse: For each a in F, except 0, there is an element a−1 in F such that

aa−1 = (a−1)a = 1.

A field, then, is a set of elements in which it is possible to do addition, subtraction, multipli-
cation, and division without leaving the set. Subtraction is defined by: a−b = a+(−b) using
additive inverses. Division is defined by: a/b = a(b−1) using multiplicative inverses.

A finite field is a field that has a finite set of elements. The number of elements in a field is called
the order of the field. Any two finite fields of order q are isomorphic. Isomorphic means that
the two fields have a one-to-one mapping between them that preserves the operations amongst
the elements. There exists a finite field of order q if and only if q = pn where p is a prime
number (called the characteristic of the field) and n is a positive integer. These fields are also
referred to as Galois fields and written as GF(pn).

When n = 1, the finite field is also referred to as a prime field. Let p be a prime number. Then
GF(p) is constructed as follows:

• The set of elements in this field are the integers modulo p: Zp = {0,1, ...p−1}.
• The first binary operation is addition modulo p. The additive identity is e = 0.
• The second binary operation is multiplication modulo p. The multiplicative identity is

e = 1. Integers only have a multiplicative inverse in Zn if they are relatively prime to n.
Since p is prime, all positive integers less than p are relatively prime to p. Therefore, there
exists a multiplicative inverse for all the non-zero elements in GF(p).

This research used only p= 2. In the case of GF(2), addition (and subtraction) is logical bit-wise
XOR and multiplication is logical bit-wise AND.

Example in GF(2). GF(2) = {0,1}.
0+a = a 1+1 = 0 1∗a = a 0∗0 = 0

6

When n > 1, integers mod pn cannot be the elements of the field as they do not all have multi-
plicative inverses within the field. Rather, GF(pn) may be constructed as follows:

• The set of elements in this field are polynomials, in particular the set S of all polynomials
of degree at most n−1 with coefficients in Zp.
• The first binary operation is polynomial addition with coefficient arithmetic performed

modulo p. The additive identity is 0.
• The second binary operation is polynomial multiplication which is performed modulo an

irreducible polynomial m(x) of degree n.

Each element of GF(pn) has the form

f (x) = an−1xn−1 +an−2xn−2 + ...+a1x+a0 =
n−1

∑
i=0

aixi,

where ai ∈ {0,1, ..., p− 1} for each i (1 ≤ i ≤ n− 1). This definition will yield a total of pn

different polynomials.

Example of elements in GF(24). The elements of this finite field are the 16 binary polynomials
of degree at most 3. The table below contains all elements of this field.

0 z2 z3 z3 + z2

1 z2 +1 z3 +1 z3 + z2 +1
z z2 + z z3 + z z3 + z2 + z

z+1 z2 + z+1 z3 + z+1 z3 + z2 + z+1

The first binary operation in GF(pn) is polynomial addition, with coefficient arithmetic per-

formed modulo p. If f (x) =
k

∑
i=0

aixi and g(x) =
m

∑
i=0

bixi, with k ≥ m then addition is defined

by f (x)+g(x) =
m

∑
i=0

(ai +bi)xi +
k

∑
i=m+1

aixi. Note that “+” is used to denote three types of ad-

dition: polynomial, field, and integer addition. Subtraction (inverse of addition) is done in a
similar manner.

Example of addition in GF(24).

7

(z3 + z2 +1)+(z2 + z+1) = z3 + z

The second binary operation in GF(pn) is polynomial multiplication which is performed modulo

an irreducible polynomial m(x) of degree n. This operation is defined by f (x)×g(x) =
k+m

∑
i=0

cixi

where c j = a0b j+a1b j−1+ ...+a j−1b1+a jb0. The degree of the polynomial answer is the sum
of the degrees of f (x) and g(x). This is an issue if the resulting polynomial does not fall within
the set of elements of the finite field. Therefore, a refinement is placed on the multiplication
operation to ensure closure over the set. If a multiplication results in a polynomial of degree
larger than n− 1, then the polynomial is reduced modulo an irreducible polynomial m(x) of
degree n. An irreducible polynomial within a field is one that cannot be expressed as a product
of two polynomials, both over Zp, and both of degree lower than itself. In slang, this would be
a prime polynomial for the field.

Example of multiplication in GF(24) with m(x) = z4 + z+1.

(z3 + z2 +1)× (z2 + z+1) = (z5 + z4 + z3)+(z4 + z3 + z2)+(z2 + z+1)

= (z5 + z+1)

= (z5 + z+1)modulo(z4 + z+1)

= z2 +1. (2.1)

In this research, I use the Galois fields with p= 2 and n= 2,4,8 which are designated as GF(22),
GF(24), and GF(28). Important features of these fields are the following:

• Galois fields of characteristic 2 can represent their elements as polynomials, binary or
hexadecimal.
• Addition is performed as bit-wise XOR with an identity element of the polynomial 0

where each element is their own inverse.
• Multiplication has an identity element of the polynomial 1.

Example of arithmetic on different representations of the elements in GF(23)

{57}⊕{83}= {D4}. (2.2)

{01010111}⊕{10000011}= {11010100}. (2.3)

8

(x6 + x4 + x2 + x+1)+(x7 + x+1) = x7 + x6 + x4 + x2. (2.4)

Equation 2.2, 2.3, and 2.4 all hold the same values - their difference is in their representation of
the elements of GF(28).

Example of different representations of the elements in GF(23)

polynomial binary hexadecimal

0 000 0
1 001 1
z 010 2
z2 100 4

z+1 011 3
z2 + z 110 6

z2 + z+1 111 7
z2 +1 101 5

2.2 Graph Theoretic Background
In this section, some graph theoretic definitions and basics are discussed as they pertain to this
research. For a more detailed treatment, consult a graph theory text such as [10].

A graph G = {V,E} consists of a finite nonempty set V of objects called vertices and a set E
of 2-element subsets of V called edges. Vertices are also referred to as nodes. When drawing a
graph, the vertices are represented by points (or small circles) and edges are indicated by a line
segment or curve between the two points in a plane.

In Figure 2.1, V (G) = {a,b,c,d,e, f} and E(G) = {ab,bc,cd,bd,de,e f ,d f}. The number of
vertices is the order of G. In order for the graph to exist, |V (G)|> 0. The given graph has order
6. The number of edges is the size of the graph. The given graph has size 7.

Graphs are classified as directed or undirected. Figure 2.1 is an un-directed graph. A directed
graph has edges that have orientation, which means that the edge set consists of ordered pairs
of vertices. A simple directed graph allows only edges to occur between distinct vertices. An
example of this is shown in Figure 2.2. An undirected graph has edges without orientation as in
the graph in Figure 2.1. A complete graph is an undirected graph in which every pair of distinct

9

Figure 2.1: An undirected graph. Figure 2.2: A directed graph.

vertices is connected by a unique edge. A subgraph is a graph, G′, is a graph whose vertex set
and edge sets are respectively subsets of the vertex and edge sets of G.

In this research, we also discuss bipartite graphs. A graph is bipartite if the V(G) can be parti-
tioned into two subsets U and W such that every edge of G joins a vertex of U and a vertex of
W. Figure 2.3 is an example of a bipartite graph with U(G)= {a} and W(G)= {b,c,d}.

Figure 2.3: A bipartite graph.

More generally, a graph is a k-partite graph if V(G) can be partitioned into k subsets V1,V2, ...,Vk

such that uv is only an edge of G if u and v belong to different partite sets. If, in addition,

Figure 2.4: A complete bipartite graph.

10

every two vertices in different partite sets are joined by an edge, then G is a complete k-partite
graph. [10] An example of a complete bipartite graph is in Figure 2.4.

A path is a sequence of edges which connect a sequence of vertices. A finite path has a start and
end vertex. A closed path starts and ends at the same vertex. If a path does not visit any vertex
more than once, it is a simple path. A path that is simple and closed is a cycle. A k-cycle is a
cycle that visits k unique vertices.

2.3 Cryptographic Background
The fundamental objective of cryptology is to allow two individuals (normally referred to in
literature as Alice and Bob) to communicate over an unsecure channel in such a way that a third
person (Eve) cannot understand the dialog. Alice has a message (called plaintext) that she wants
to pass to Bob. She encrypts the plaintext with a pre-designated key. The result is ciphertext
which she transmits over the channel to Bob. While Eve is eavesdropping, she grabs a copy
of the transmitted message but cannot decipher it to the plaintext because she does not know
the key. Once Bob receives the ciphertext he can successfully re-create the original message
because he knows the encryption key that Alice used [11].

A cryptosystem (or a cipher) is a five-tuple (P,C,K,E,D), where the following conditions are
satisfied:

1. P is a finite set of possible plaintexts.
2. C is a finite set of possible ciphertexts.
3. K is the keyspace – the finite set of possible keys.
4. For each k ∈ K, there is an encryption algorithm ek ∈ E and a corresponding decryption

algorithm dk ∈D. For ek : P→C and dk : C→ P are functions such that dk(ek(x)) = x for
every plaintext x ∈ P.

The two most common types of cryptosystems are block and stream. This refers to the amount
of plaintext that the system encrypts at one time. It either operates on one bit (or byte) at a time
or a group of bits (bytes) at a time.

A block cryptosystem can further be classified as symmetric or asymmetric. This classification
refers to the type of key. A symmetric cryptosystem uses an encryption key that can be calcu-
lated from the decryption key. In fact, it might use the same key to encrypt and decrypt. This
generates the requirement for Alice and Bob to agree on a key before secure communications

11

can begin. The Advanced Encryption Standard (AES) is the current standard for encryption in
the United States and much of the world. It is discussed in Chapter 3. It is important to note
that AES is a symmetric cryptosystem.

One specific symmetric block cryptosystem is the Feistel cipher. This is an iterated system with
layers of diffusion and confusion in each round. A Feistel cipher block is split into two halves
at the start of each round. Only one half of the block is transformed by the round’s functions.
At the end of the round, the block halves are swapped. Based on its structure, it is an easily
reversible system allowing the same hardware to encrypt and decrypt messages. Many of the
AES predecessors use this Feistel structure (i.e. DES, Lucifer, Blowfish). However, AES does
not. Rather it uses the SPN (Substitution Permutation Network) scheme. In an SPN cipher, all
bits are treated uniformly to both diffusion and confusion operations; each round consists of
a substitution and a permutation. The result is a cipher that is efficient to implement in both
hardware and software.

An asymmetric cryptosystem is also referred to as a public-key cryptosystem. It uses different
keys for encryption and decryption. There is no known computationally feasible method to
determine the decryption key from the encryption key. This feature enables complete strangers
to use these systems.

Regardless of the classification of cryptosystem, the focus of cryptanalysts is to break the sys-
tem. A cryptosystem is considered academically ‘broken’ when an attack can correctly deter-
mine the key quicker than a brute force attack. A brute force attack is an exhaustive key search,
when an attacker systemically checks all possible keys until the correct key is found. Worse
case, this could require the attacker to check every possible key within the key space. Although
a cryptosystem may be theoretically broken, it could still be in use today if the attack is not
practical with today’s resources.

One of the most prevalent cryptosystems today is the Advanced Encryption Standard (AES)
and therefore there is no larger, brighter red cape in the bull ring. This research will explore the
continuation of Raddum and Semaev’s idea for an algebraic attack on this cipher.

12

CHAPTER 3:

Advanced Encryption Standard (AES)

In January 1997, RSA Laboratories [12] issued a handful of cryptologic challenges to the public
with significant cash prizes for anyone who could break the encrypted messages. One of these
challenges was for a message encrypted by the Data Encryption Standard (DES), which was the
standard for U.S. government encryption at the time.1 Simultaneously, the National Institute for
Standards and Technology (NIST) [13] began the process to find a replacement cipher for DES,
a replacement that would be “an unclassified, publicly disclosed encryption algorithm capable
of protecting sensitive government information well into the next century.”

In September of 1997, the NIST process began with an official request for proposals that was
open to the international community. One of the main reasons behind conducting a public
search for an algorithm was to allow NIST to leverage the best and brightest minds across a
multitude of specialties, nationalities, and salaries. Ultimately, NIST believed that this global
effort would yield high quality results and inspire public confidence in the security of the cipher
as the public would no longer have to just solely rely on the National Security Agency (NSA)’s
promise of security.

The main requirements for the replacement cipher (which was to be named AES) were that
it: 1) be a block cipher, 2) support a block size of 128 bits, and 3) support key sizes of 128,
192, and 256 bits. Fifteen ciphers were submitted, including one cipher each from Australia,
Belgium, Costa Rica, France, Germany, Japan, Korea, one from a mixed team (UK, Norway,
Israel), two from Canadian teams, and five from American teams [14]. In August 1998, NIST
hosted the first of three AES conferences in which the cryptology community gathered to review
the submissions, listen to the authors, and begin full-frontal assaults on the worthiness of the
submitted algorithms.

In August 1999, NIST picked the five finalists, of which three had authors from the United
States, one had authors from Belgium, and one had a mix of international authors. The five
finalists were tested by the USG, industry, and the global cryptology community for the next two
years. These five algorithms were evaluated on several key categories: security, performance

1Responses to the DES Challenge: In 1998, the Electronic Frontier Foundation created the “DES Cracker”
machine which found the key in 56 hours at the cost of $250,000 to build. In 1999, a distributed network was used
via the Internet to brute force the DES key in 22 hours and 15 minutes.

13

(i.e., hardware, software, and smart cards), design features (i.e., simplicity), and implementation
difficulty (i.e., flexibility). The final scores are in Table 3.1 with a higher number indicating a
better evaluation. Ultimately none of these ciphers were found to be “bad” but Rijndael was
“the most elegant of the final five candidates” [15]. Despite its beauty, most of the comments
that NIST received from both industry and government agencies showed a dislike for Rijndael
compared to its competitors due to its simplicity [16].

Rijndael Serpent Twofish MARS RC6
General Security 2 3 3 3 2
Implementation Difficulty 3 3 2 1 1
Software Performance 3 1 1 2 2
Smart Card Performance 3 3 2 1 1
Hardware Performance 3 3 2 1 2
Design Features 2 1 3 2 1
TOTAL 16 14 13 10 9

Table 3.1: Official AES finalist results. After [3].

Yet, Rijndael scored higher than the competition for many reasons. First was its transparent,
simple design that allowed for quick and accurate security estimates while clearly showing
there were no hidden “back doors” for the government to exploit. Second, it was based on the
byte, which made it more versatile than many of its competitors for implementation. Finally, its
strong algebraic structure supported its ability to be represented (either all or in part) in different
manners on different platforms.

Despite the criticisms, on 06 December 2001 the Federal Information Processing Standards
(FIPS) 197 [1] was published which re-named the Rijndael entry to AES. It also decreed that
U.S. sensitive but unclassified documents would use it. Rijndael was the Belgian entry from
Joan Daemen and Vincent Rijmen. Unlike its predecessors, AES has proven resistant to linear
and differential attacks to date.

3.1 AES Structure
Successful modern ciphers incorporate two important ideas that are credited to Claude Shannon:
confusion and diffusion. Confusion exists when the relationship between the plaintext and
the ciphertext is obscured. This relationship is dictated by the key. Therefore, the correlation
between the statistics of the ciphertext and the value of the encryption key should be as complex
as possible. Diffusion exists when the plaintext is dispersed across the breadth of the ciphertext.

14

Namely, one bit of the plaintext should affect many bits of the ciphertext in order to hide the
statistical structure of the plaintext [17, p. 72-73]. AES utilizes both of these principles.

In AES, a block of plaintext is transformed into ciphertext via rounds of mathematical manip-
ulation. The input to each round is a 128-bit block and the output is also a 128-bit block. The
basic unit for AES is the byte, unlike its predecessors. This translates into 16 bytes of input and
output for each round. The conventional view of AES places those 16 bytes into a 4x4 square
array called the state array, as seen in Figure 3.1.

Figure 3.1: State array of AES. From [1].

3.1.1 Mathematical Background
A byte is an ordered sequence of eight bits b7b6b5b4b3b2b1b0 that can be thought of as a vector
in eight dimensional vector space over a Galois Field of order 2. Since GF(2) has only two
elements, and its arithmetic operations are simple in nature, much of the AES cryptanalysis
work has focused on this representation. An alternative view would be to think of the byte as an
element in GF(28). The specification for AES defines this finite field in terms of the following
irreducible polynomial:

m(x) = x8 + x4 + x3 + x+1 (3.1)

This field will be referred to as the Rijndael field for the remainder of this work. An AES
byte (or word) can be referred to by its hexadecimal notation: {3A}, its binary representation:
00111010, or as an element in the Rijndael field: x5 + x4 + x3 + x.

3.1.2 Encryption Algorithm
At the start of the AES algorithm, the plaintext is transferred into the state array and the 0th
round key is added. Key addition is the first step in the algorithm because any transformation
of the plaintext before the addition of a key does not contribute to the security of the cipher

15

as those steps can be easily stripped away during the cryptanalysis. Next, the round functions
occur 10, 12, or 14 times. The resulting final State Array is the ciphertext.

The number of rounds in AES depends on the size of the key being used; a 128 bit key uses 10
rounds, a 192 bit key uses 12 rounds, and a 256 bit key uses 14 rounds. These systems will be
respectively referred to as AES-128, AES-192, and AES-256. The number of required rounds
was determined by identifying the maximum number of rounds for which shortcut attacks were
found during the NIST competition and then adding a considerable safety margin [18, p. 41-
42]. The inner workings of AES-128, AES-192, and AES-256 are the same. Within the rounds,
four transformations occur that implement the diffusion and confusion principles. These four
transformations of the state array are: 1) byte substitution using an S-box, 2) shifting rows, 3)
mixing columns, and 4) adding a round key.

In each round, the Byte Substitution transformation occurs first. This is a simple substitution
of one byte of the State Array for another possible byte using a statically defined substitution
referred to as the S-box. This S-box contains a full permutation of the elements in the Rijndael
field and is created by the composition of three operations. The first operation is a multiplicative
inversion over the Rijndael field with the minor modification that {00} is inverted to {00}.
Therefore, the input byte x (as long as x6=0) has an output of w such that xw≡ 1 (mod m(x)).
The second operation is a GF(2) linear mapping. The output w from the inversion is regarded
as a vector in GF(2)8. This is then multiplied by a specific circulant matrix to determine the
output y. The third operation is the addition of a constant. The output y from the linear mapping
is then added to the field element {63} to produce the output of the S-box [19, p. 48].

The polynomial representation of Byte Substitution (the composition of the three described
operations) is a very sparse polynomial:

05x254 +09x253 +F9x251 +25x247 +F4x239 +01x223 +B5x191 +8Fx127 +63. (3.2)

It is within this transformation (Byte Substitution) that AES receives its non-linearity. This is
the core strength of the algorithm. According to Rijndael’s creators, the inversion operation
was selected to provide the non-linearity to the system because of its very simple algebraic
structure especially when compared to the complicated non-linearity function used in DES.
The reason behind the inclusion of the linear mapping was so that interpolation attacks would
not be successful. This mapping has a very simple description but becomes quite complicated

16

when combined with inversion. Finally, adding {63} ensures that the S-box has no fixed points
(S(a) = a) and no opposite fixed points (S(a) = ā). The specific combination of these three
functions is what provides confusion in the cipher [18, p. 34-36].

Figure 3.2: Shift Rows operation (s=initial array, s’=after array). From [1].

The Shift Rows operation is the second transformation in the round and is graphically depicted
in Figure 3.2. Here the bytes in the ith row are rotated i places to the left. This operation gives
high dispersion to the resulting state array.

The Mix Columns operation is the third transformation in the round and is graphically depicted
in Figure 3.3. Here all the columns in the state array are independently mixed up. This is the
result of multiplying each column by a(x) = {03}x3 + {01}x2 + {01}x+ {02} and reducing
modulo x4 + 1. This can also be seen in Figure 3.3 as multiplying the current state array’s
columns by a specific MDS matrix (matrix where every square sub-matrix is invertible). The
mixed column operation provides high local diffusion to the state array.

Figure 3.3: Mix Columns operation on each column of the state array. From [1].

17

These two transformations (Shift Rows and Mix Columns) provide the algorithm its diffusion
component. Both of these functions were specifically designed to adhere to the wide trail strat-
egy which is a design approach for block ciphers that ensures they are resistant to linear and
differential attacks while maintaining some semblance of efficiency. This strategy widens the
probability trails for linear and differential attacks in order to make exploitation of the data more
difficult [18, Ch. 9].

The fourth, and final, round transformation is to add the round key. The AES key schedule
algorithm takes the initial key and creates a different 16-byte round key for each round. The
Add Round Key function takes the round’s unique key and adds it to the current state array.
This completes a typical round of AES. These rounds are repeated 10, 12, or 14 times depend-
ing on the AES key size. The only modification to this process is that the final round of the
algorithm does not use the Mix Columns operation. Therefore, the last round consists of a Byte
Substitution, Shift Rows and Add Round Key. Here is how the typical process looks:

A SRMA . . . SRMA SRMA SRA.

The letters (in the above process) stand for the following transformations described in this sec-
tion: A (Add Round Key), S (Byte Substitution), R (Shift Rows) and M (Mix Columns). As
illustrated in this section, none of the operations used in AES are difficult. In fact, most of these
values can be pre-computed and stored in look-up tables. This is the main reason why AES is a
quick algorithm in both software and hardware implementations.

3.1.3 Key Schedule Algorithm
The key schedule algorithm creates the requisite number of round keys for the encryption algo-
rithm. AES-128 requires 11 keys, AES-192 requires 13 keys, and AES-256 requires 15 keys.
Similar to the encryption algorithm, the key creation process is almost the same for each of
these systems; it just iterates longer to generate more key material for the larger systems. This
research focuses on AES-128 so the key schedule algorithm presented here will be the variety
for AES-128.

The algorithm begins with the user-provided key. It will use this key to recursively create
the other round keys. The 128 bits of the key are placed in 4x4 matrix in a similar manner
as the placement of the plaintext into the state array for the encryption process. However,
the key schedule algorithm operates on ‘words’ which are 4-byte constructs as opposed to the

18

Figure 3.4: Start of the AES key schedule algorithm. From [2].

encryption algorithm which operates on bytes. These words are the columns of the 4x4 matrix.
The algorithm begins when the four columns of the key matrix are loaded into the first four
columns of the expanded key structure (see Figure 3.4). The first 4 bytes of the encryption key
are word w0, the second 4 bytes are word w1, etc. The key schedule algorithm expands the first
four words into a 44-word key schedule. Words 0 to 3 (the original key) are XOR’ed with the
plaintext at the start of the algorithm. The remaining 40 words are used four at a time during
each of the rounds. For instance, w4w5w6w7 is the Round 1 key, and so forth.

Figure 3.5 shows the flow of the key schedule algorithm. The algorithm works on four words at
a time. Three of the four words are created as simple XORs with the previous round’s key. For
instance, w1⊕w4 = w5 and w2⊕w5 = w6 and w3⊕w6 = w7. One of the four words is created
using a more difficult process—it is transformed by the g function prior to XOR. For instance,
g(w3)⊕w0 = w4. This process ensures that the previous round key influences the next round
key [2].

The g function operates on the last word of the previous 4-word key. Let the bytes of this word
be represented by w3 = [b0b1b2b3]. The g function uses the following sub-functions:

1. RotWord performs a one-byte circular left shift on the word. Namely, [b0b1b2b3] becomes
[b1b2b3b0].

19

Figure 3.5: AES key schedule algorithm. From [2].

2. SubWord performs a byte substitution on each byte in the input word [b1b2b3b0] using
the same S-box as the encryption algorithm.

3. The results are then XORed with a round constant.

The round constant is a word whose three right-most bytes are always zero. Therefore, for the
ith round key, this constant is (RC[i],0,0,0). RC[i] is determined recursively:

RC[1] = 1,
RC[j] = 2∗RC[j−1].

(3.3)

The purpose of the round constant in the key schedule algorithm is similar to its use in the
encryption algorithm—it removes the symmetries that might have been incurred by other steps
of the process. This algorithm clearly uses diffusion as changing one bit of the user provided
key will affect all of the round keys. After one round, there is a significant change in the
key and by the last round, the key has changed in over half of the bits [17, p 173-174]. The key
schedule algorithm is also efficient because it re-uses many of the functions from the encryption
algorithm. It also introduces non-linearity (i.e., difficulty in solving) through the use of the
proven AES S-box. Finally, unlike its predecessors, this algorithm ensures that AES has no
weak keys.

20

3.1.4 Small Variants
In 2005, C. Cid et al. suggested creating small scale variants of AES to analyze [20]. The
rationale for creating these small variants is that attempting to execute attacks on the full version
of AES is infeasible given today’s computing power. These versions retain, as much as possible,
the algebraic properties of full AES. This allows researchers to test theories and attack methods
on versions via current computing resources. AES is scaled in terms of four parameters:

1. number of rounds n (1≤ n≤ 10)
2. number of rows in the State array r (r = 1,2,4)
3. number of columns in the State array c (c = 1,2,4)
4. the size of a word e (e = 4,8)

The notation of a scaled version of AES is referred as nrce. Full AES is A448, written in
hexadecimal notation.

These small scale variants of AES have a smaller key space than full AES so an exhaustive key
search is feasible to attack them. Recall that their purpose is as a research tool for analysis and
never for commercial implementation. Cid’s original paper describes (in detail) the structure
of the small scale variants to include the irreducible polynomials used for the various word
sizes. It includes the S-box construction, linear mapping, and inversion look-up tables for these
variants which have become the common framework that all researchers use in order to compare
methods and analyze results with respect to AES.

For this research, I use all variants of Cid’s small scale AES, and also variants with e = 2. The
four element field (resulting from e = 2) enables me to perform the mathematical computations
manually in order to test/validate the method and gain useful insights when e increases. How-
ever, e = 2 is not a good parameter for an actual cryptosystem since every possible S-box in
the four-element field is affine. Therefore, none of them is non-linear, making the system of
equations easier to solve.

3.2 Representation
The structure of AES allows it to be represented in different ways. Some of these different
representations provide practitioners insights into how various portions of the algorithm interact
with each other, some representations make the algorithm more resistant to side-channel attacks,
and other representations might ultimately uncover exploitable weakness [19, p. 3].

21

Therefore, the simple algebraic structure of AES is where cryptanalysts are focusing their at-
tacks. Recall that an algebraic attack is defined as an attempt to solve the multivariate polyno-
mial equation system that represents the cipher in order to obtain the key. Simplistically, for
each plaintext block pushed through AES, there exists a system of equations describing each
round key and intermediate state arrays as the block traverses the algorithm.

The idea of representing a cipher as a system of equations should be a comfortable idea even to
the mathematical layman. In middle school, most students learn that a mathematical function
is akin to a black box in which one provides input, magic happens, and then output results as
modeled in Figure 3.6.

Figure 3.6: Generic representation of a function.

This middle school construct is merely a high-level view of what a cryptosystem is-—plaintext
(x) is given to it and out comes ciphertext (y). However, leaving it at that level of detail creates
a horribly complicated function. Ferguson, Shroeppel and Whiting [21] craft a single equation
which consists of 250 terms (with a leading term of x255) for AES-128 in their paper. However, it
is ultimately very impractical to solve. Instead of attempting to solve the cipher as one function,
it can be subdivided into intermediate equations since all the components within the black box
are known.

The resulting equation system has two parts. The first part is the set of equations that describe
the encryption process. It is assumed that we know a plaintext / ciphertext pair generated by
the system so that the first and final AES state arrays are known. This is due to Kerkhoff’s
principle. The unknowns in this system are the intermediate state arrays and the round keys.
These equations are unique to the plaintext / ciphertext pair that influenced its creation. The
second part of the system is the set of equations that describe the key schedule algorithm. These
equations depict how the initial key is used to create individual round keys and hold true for the
specific key used. The complete knowledge of the algebra in each round allows us to craft the
system of equations that describe the state arrays and the key completely.

Some mathematicians choose to express the AES system of equations over GF(2)— in terms

22

of bits. This sparse system results in 14,976 equations over 4,288 variables [19, p. 78]. By
using linear substitutions to remove variables, a more compact quadratic system of equations
is created. This system has 9,600 equations over 1,600 variables [19, p. 79]. Other mathe-
maticians create the system over GF(28)—in terms of bytes. While there are many different
ways to describe the system of equations representing AES, the primary goal should be to use a
representation that helps one attack or solve it.

Given that we now think of a cryptosystem as just a system of equations, the idea of breaking
the system is analogous to solving the system for the key variables. Yet, recall that the strength
of AES is found in the inversion done in the Byte Substitution function at the beginning of each
round. This causes any system of equations defining AES to be non-linear, which turns solving
the system into a hard problem.

As mentioned in Chapter 1, the problem of solving a multivariate quadratic (MQ) system of
equations is a known NP-hard problem. However, Shamir et al. [22] demonstrated that the
complexity of the MQ problem drops substantially when the system is over-defined. Therefore,
many cryptanalysts have focused on the GF(2) representation of AES to take advantage of the
fact that the equation system is both over-defined and sparse.

3.3 Solving Methods
The important question is whether any of these representations can reduce the complexity of
the problem or have a structure that can be manipulated to find a solution in practical time.
Three main tools exist to solve large systems of multivariate polynomial equations representing
a cryptosystem. They are linearization, Gröbner Bases, and Boolean propagation.

3.3.1 Linearization
The first method uses the idea of repeatedly linearizing the system of equations. The idea was
first introduced by A. Kipnis and A. Shamir [23]. In general, we do not know how to solve
the MQ problem. However, we do know (albeit, not efficiently often times) how to solve a
system of linear equations. Therefore, we want to transform the multivariate quadratic equations
into linear equations. Assume there exists a system of polynomial equations with m variables:
x0,x1, . . . ,xm−1. For every product xix j, create a new term yi j to replace it. Therefore, each time
a quadratic term is replaced, more equations can be constructed and the process repeats until all
that remains is a system of linear equations. Unfortunately, this method only solves the system
of equations if there are at least m2

2 equations for the m variables. If there are fewer polynomial

23

equations, then the resulting system of linear equations is under-defined and therefore, cannot
be solved.

The downfall of this method is that a significant number of new variables are introduced through
this process. Therefore, great care needs to be taken in its implementation. The two best known
linearization algorithms are XL and XSL. When the eXtended Linearization (XL) attack was
published, its authors hoped it would run in subexponential time but that seems unlikely based
on current analysis. To exploit the sparseness of the system and resolve the inefficiencies of
XL, the eXtended Sparse Linearization (XSL) algorithm was created. XSL is a tailored attack
on symmetric block ciphers that use S-boxes, linear diffusion, and XOR their round key (like
AES, Shark, Square and Serpent) [24].

3.3.2 Gröbner Bases
The second method to solve large systems of multivariate polynomial equations is to use the
ideal derived from the system. Namely, transform the given system of equations into another
set of polynomial equations with certain “nice” properties referred to as the Gröbner Basis.
These systems are equivalent because they generate the same ideal. The classical technique
for calculating Gröbner bases is the Buchberger algorithm. The Buchberger algorithm first
sets the monomial order and then by computing the S-polynomial of two equations, eliminates
the top monomial. This process repeats until all of the Gröbner bases are found and all but
one of the variables are eliminated. This transforms the system into an univariate polynomial
equation [5, pg 245-248].

The downfall of the second method is that the degree of the remaining monomials increase
rapidly so the algorithm’s time complexity makes this method impractical to use if there are
many variables in the original system. Worse case, the algorithm’s runtime is double exponen-
tial time (f (x) = abx

). The F4 algorithm and the F5 algorithm are two variants of this method
that are used today. In practice, these algorithms cannot handle systems with more than 15
variables.

The F4 algorithm [25] is a strategy for executing the steps of the Buchberger algorithm which
takes advantage of fast linear algebra techniques and the sparseness of the polynomials. The
two advantages of this technique are that: 1) the memory requirements are controlled due to
the pre-processing phase and 2) it reduces the system to row echelon form in order to use
Gaussian elimination on the sparseness. F4’s main problem lies with its tendency to produce

24

false positive solutions. Therefore, F5 was designed by J.C. Faugere [26] to combat this issue.
The F5 algorithm is optimized and uses different criteria to deal with unnecessary critical pairs,
but there is no complete proof that it will always find an answer.

3.3.3 Boolean Propagation
The third method to solve large systems of multivariate polynomial equations is based on the
Boolean satisfiability (SAT) problem. The process begins by expressing the system as a com-
plicated Boolean expression involving a number of variables. This expression is true if and only
if the ciphertext equals the encryption of the plaintext. The process then consists of a search
for key bits that make the expression true. This is accomplished by assigning values to vari-
ables until a conflict is reached (i.e., the Boolean expression becomes false). Then the process
back-tracks and re-assigns values to remove the conflict. The key is revealed once the set of val-
ues is found that makes the entire expression true. Some classic SAT solvers [27] are: zChaff,
MiniSat, WalkSAT and SAT4J. There are two classes of algorithms to solve this problem: 1)
conflict-driven clause-learning algorithms (like Chaff) and 2) stochastic local search algorithms
(like WalkSAT).

All of these methods have been tried on AES with limited success. As of today, the most
successful published attack on AES is by Bogdanov et al. [28] in 2011. Compared to brute-
force methods, this technique provides an advantage of about a factor of three to five. However,
it requires 288 pieces of data to solve the system for the key. The results are in Table 3.2.

AES key size Computational Complexity
128 2126.1

192 2189.7

256 2254.4

Table 3.2: Results of best attack on AES.

Therefore, AES has been broken. But Bogdanov’s approach is clearly not practical with to-
day’s computing resources. Therefore, this research looks at a non-typical representation of the
system of equations in order to develop a new method to solve them. This representation is
discussed in Chapters 4 and 5.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

CHAPTER 4:

MRHS

This chapter summarizes the approach and methods of Raddum and Semaev. It begins with a
discussion about how they represent the target system as a system of Multiple Right Hand Sides
(MRHS) linear equations. The MRHS representation concept has been used in other math-
ematical systems, but using it on AES is the original work of Raddum and Semaev [8]. This
representation is quite compact, and computations performed upon it can be more efficient com-
pared to Chapter 3’s algorithms. The chapter then discusses their methods (agreeing, gluing,
guessing, and extracting) to solve the system.

4.1 Representation
Let x = (x1x2 . . .xn)

T be a column vector of n Boolean variables, A be a k×n binary matrix of
full rank, and b1,b2,b3, . . . ,bs be column-vectors of size k. An equation

Ax ∈ {b1,b2, ...,bs} (4.1)

is called an MRHS system of linear equations with right hand sides b1,b2,b3, . . . ,bs. A solution
to (Equation 4.1) is a Boolean n-vector satisfying one of the particular linear equations Ax = bi.
The set of all solutions to (Equation 4.1) is the union of solutions to the individual linear systems
for all bi. In order to more easily illustrate the possibilities in the MRHS, the

−→
b are written next

to each other and the result called a matrix {L}. Therefore, (Equation 4.1) can be re-written
as Ax ∈ {L}. The braces around the L serve as a reminder that this is not a traditional matrix,
but instead an enumeration of the possible right-hand sides as a set of columns. Raddum and
Semaev routinely called these systems symbols, notated within this body of work as: S1 : A1x ∈
{L1}. Our notation change (from the original notation S1 : A1x = [L1]) is intended to make the
meaning more clear.

Therefore, AES is translated into a system of symbols:

S1 : A1x ∈ {L1}, . . . , Sm : Amx ∈ {Lm}. (4.2)

27

A solution to (Equation 4.2) is the −→x such that each of the symbols is satisfied (all of the
underlying linear equations are satisfied). Suppose that there exists a unique solution −→x to a
set of symbols, denoted x0. Then Aix0 will be equivalent to only one column in {Li}, which is
the only possible right hand side. The selection of any other column in {Li} will result in an
inconsistency in another symbol and therefore the system (Equation 4.2) will not be solved.

Raddum and Semaev originally created four algorithms that are used to solve the system of
equations generated in Equation 4.2. They are known as agreeing, gluing, extracting and guess-
ing. All four processes seek to remove the inconsistent columns, bi, from each symbol.

4.2 Agreeing
Agreeing, in the context of Raddum and Semaev’s work, is performed pair-wise between sym-
bols. Let Si : Aix ∈ {Li} and S j : A jx ∈ {L j} be any two symbols within the system of equations.
If Si and S j agree for every b ∈ Li, then there exists a b′ ∈ L j such that

(
Ai

A j

)
−→x =

(
b

b′

)
(4.3)

is consistent and vice versa. If Si and S j do not agree, then one removes the b columns from
Li in which Aix = b is inconsistent with all A jx ∈ {L j}. Similarly, one removes the b′ columns
from L j in which A jx = b′ is inconsistent with all Aix ∈ {Li}.

Raddum and Semaev created an algorithm for agreeing that utilizes typical linear algebra tech-

niques. Let A =

(
Ai

A j

)
be the concatenation of the matrices in Ai and A j defined above. Matrix

A has t = ki + k j rows. Let Ti =

(
Li

0

)
and Tj =

(
0
L j

)
be matrices with t rows.

Ax = [Ti]+ [Tj]. (4.4)

In Equation 4.4, we can now pick one column from Ti and one from Tj, add them, and that is a
possible right hand side for the new symbol. If A has full rank, then the two symbols agree.

28

4.2.1 Agreeing Procedure

1. Produce a non-singular transform matrix U = Ui j of size t ∗ t such that UA is a matrix
with all zeros in the last r = ri j rows and of rank t− r.

(a) If r = 0, then symbols agree.
(b) If r > 0, there are linear dependencies among the rows of A. Proceed to step 2.

2. Compute UTi and UTj. Let Pi denote the set of UTi column projections in the last r

coordinates. Similarly, define Pj.

(a) If all the columns in Pi exist in Pj, then the symbols agree.
(b) If Pi 6= Pj then right hand sides can be removed. Proceed to Step 3.

3. For any column in Pi that is not found in Pj remove the corresponding columns in Li.
Likewise, for any columns in Pj that is not in Pi remove the corresponding column in L j.
The symbols now pair-wise agree.

The agreeing algorithm is the heart of Raddum and Semaev’s solving process. Provided that the
conditions can be set in order to reach step 3, a solution is quickly reached. Unfortunately, the
AES system of symbols begins in an agreed state. It takes multiple iterations of the other algo-
rithms (gluing, guessing, extracting) to create a situation where r > 0. In general, agreeing does
not make a significant contribution to the process until right-hand sides are removed. However,
then it is very effective.

The interesting aspect about the agreeing algorithm is that it can gain momentum to solve the
system once RHSs are removed. For instance, without loss of generality, suppose the symbols
Sh and Si agree but Si and S j disagree. Therefore, columns could be removed from Li or L j.
If columns are removed from Li, perhaps now Sh and Si no longer agree. Therefore, Sh and Si

will have to be re-agreed, and perhaps columns from Lh can now be removed. This can create a
‘cascade effect’ on the system and the system quickly reduces its size and complexity.

Agreeing Example [8]
Let there be two symbols: A1X ∈ {L1} and A2X ∈ {L2} in variables X = {x1,x2,x3,x4,x5} ex-
pressed in Equation 4.5.

29

11000
10100
10010

x1

x2

x3

x4

x5

=

1001
0100
0011

 ,
01001

00101
00011

x1

x2

x3

x4

x5

=

0100
1100
1101

 (4.5)

These symbols can also be written in algebraic normal form as the following

x1x4 + x1x2 + x2x4 + x2 + x3 + x4 +1 = 0, x2x3 + x2x5 + x3x4 + x4x5 + x2 + x3 = 0 .

Step 1 of the agreeing process: Matrix A is produced and transformed with the matrix U:

A =

11000
10100
10010
01001
00101
00011

→UA =

11000
10100
10010
01001
00000
00000

,U =

100000
010000
001000
000100
110110
101101

. (4.6)

Clearly, r = 2 and A lacks full rank. Proceed to step 2 and create the following:

T12 =

1001
0100
0011
0000
0000
0000

and T21 =

0000
0000
0000
0100
1100
1101

.

This enables UT12 and UT21 to be computed.

UT12 =

1001
0100
0011
0000
1101
1010

and UT21 =

0000
0000
0000
0100
1000
1001

. (4.7)

30

Examine the last two coordinates of the columns in Equations 4.7 and determine the projections:
Pr12 = {(1,1),(1,0),(0,1)}, Pr21 = {(1,1),(0,0),(0,1)}, Pr12∩Pr21 = {(1,1),(0,1)}
Notice that the second and fourth columns of UT12 do not match any columns of UT21. That
is, the projections show that the sum of the columns cannot give zero in the last two rows.
Therefore, the second and fourth columns of L1 should be removed. Similarly, the second and
third columns of L2 should be removed. The new symbols are:

11000
10100
10010

x1

x2

x3

x4

x5

=

10
00
01

 ,
01001

00101
00011

x1

x2

x3

x4

x5

=

00
10
11

 , (4.8)

and they now agree.

4.3 Gluing
Once all the symbols are pair-wise agreed and if the cryptosystem is not solved (i.e., all sym-
bols reduced to one RHS), then Raddum and Semaev utilize a gluing algorithm to create new
symbols. Suppose you glue symbols Si and S j into a new symbol Bx ∈ {L} for which the set
of solutions is the common solutions to A1x ∈ {L1} and A2x ∈ {L2}. Once the new symbol
is created, Si and S j are removed from the system because their relevant information is now
captured in the new symbol.

The gluing procedure is straightforward to execute. B is the submatrix of UA (using previous
example) in its first t− r nonzero rows. The matrix L has t− r rows and its columns are created
by adding one column from UTi to one column of UTj if they have the same projection in the
last r-coordinates. L contains the first t− r entries of the newly created column.

Gluing Example [8]
Using the symbols resulting from agreeing in Equation 4.8, the two symbols are glued together
into one symbol. The result is shown in Equation 4.9.

31

11000
10100
10010
01001

x1

x2

x3

x4

x5

=

10
00
01
00

 . (4.9)

Although gluing is required to eliminate RHSs in Raddum and Semaev’s process and therefore
allow agreeing to cascade, it comes at a great cost. In fact, the practicality of the entire process
is rendered ineffective by the use of this algorithm because the storage requirements for these
new, significantly larger symbols grows exponentially as the process continues. If Li and L j

have width si and s j respectively, their glued symbol could have as many as si× s j columns.
Implementations of this algorithm have a built-in threshold to restrict gluing operations based
on the available computer system resources. After gluing a pair of symbols, the new symbol
will normally not be in agreement with all the other symbols in the system, so the agreeing
algorithm must usually be re-run on the system in hope of eliminating more columns in the [L]s.

In Raddum and Semaev’s work, they never specify how to choose which symbols to glue. Work
has been done on crafting different selection methods however this process is still hampered by
its extensive memory requirements.

4.4 Extracting
The third component of Raddum and Semaev’s MRHS solving process consists of extracting
the linear equations once they are found in the modified system. Recall that the end state of
this process is a solved system of equations which result in the key variables used in the cipher.
If the multivariate system is reduced to a linear system, then this is trivial to solve with any
modern computer algebra program. As the agreeing and gluing procedures remove right-hand
sides, they can also leave behind linear equations when enough RHSs are removed in a symbol.
For instance, choose a symbol S : Ax ∈ {L} where L is a k× s matrix. Find a non-singular
transformation matrix V of size k× k where VL is upper-triangular with zeros in the last r
rows. Let A′ be the submatrix of VA in the last r rows. Then A′x = 0 is the system of all
independent linear homogeneous equations satisfied by the solutions of Ax ∈ {L}. Of course,
non-homogeneous equations can also be extracted.

Once extracted, these linear equations help reduce the remaining symbols in the system.

32

Extracting Example [8]
Begin with Equation 4.9 from the gluing example. This symbol is then transformed with linear
algebra row transformations. The symbol becomes Equation 4.10.

11000
01010
10100
01001

x1

x2

x3

x4

x5

=

10
11
00
00

 . (4.10)

This gives three linear equations: x2 + x4 = 1, x1 + x3 = 0, and x2 + x5 = 0. These three
linear equations are equivalent to the system of two initial quadratic equations.

4.5 Guessing
Theoretically, the application of the three previous algorithms should be sufficient to solve
the system. However, due to the thresholds placed on gluing, the system remains unsolved.
Therefore, guessing became a component of the Raddum and Semaev’s method. Once the
entire system is pair-wise agreed, glued to its maximum threshold, and all linear equations have
been extracted (and it is still not solved), then the only option is to start guessing some of the
variables. Most of the implementations of the MRHS idea are performed on GF(2). Therefore,
when a variable is guessed, either xi = 0 or xi = 1 is added as a linear equation. Several guesses
can produce a system of linear equations that is a new symbol, S0. This symbol can now be
used in the agreeing and gluing processes. If a guess was wrong, it will manifest itself within
the system by either forcing all the right hand sides of a symbol to be deleted or by creating a
system of linear equations in S0 that are inconsistent. Since each variable has only two possible
values, if a guess was wrong, it is trivial to determine the correct value for a variable.

Although Raddum and Semaev never provide any specific techniques or ideas on how to effi-
ciently guess variables, some work has been done in this area. Regardless of the method, with
a threshold of 216 for the maximum size of a symbol as a result of gluing operations, AES-128
still requires 112 of the 128 bits of the key variable to be found through guessing in order to
solve the system.

33

4.6 Experimental Results
The results that Raddum and Semaev achieve are based on guessing variables in order to find
the solution. Thresholds (θ) were emplaced on gluing. Table 4.1 gives the number of bits that
have to be guessed in a key in order to find the correct solution to the system of equations.

θ = 28 θ = 216

n11e n21e n22e n24e n42e n44e
n 8-bit key 16-bit key 32-bit key 64-bit key 64-bit key 128-bit key
3 0 5 16 48 48 112
4 0 8 16 48 48 112
5 0 8 16 48 48 112
6 0 8 16 48 48 112
7 0 8 16 48 48 112
8 0 8 16 48 48 112
9 0 8 16 48 48 112

10 0 8 16 48 48 112

Table 4.1: Number of guesses to solve AES for various thresholds (θ).

34

CHAPTER 5:

Extending MRHS Methods

Raddum and Semaev’s idea (as described in Chapter 4), while technically sound, is not currently
a practical tool to break AES with today’s computing power. This research takes a new look at
their ideas in order to exploit/analyze AES’s underlying structure in an effort to create a solving
process that is more feasible. We adapt the Raddum and Semaev MRHS representation to the
byte field rather than the bit field. In this field, addition is still bitwise XOR, and we used log and
antilog tables for field multiplication. We apply our methods to AES and related block ciphers
that utilize operations on the field of bytes. The use of bytes greatly simplifies the representation
of AES variants as MRHS systems.

Specifically, it is the elegance of Raddum and Semaev’s pair-wise agreeing method that is the
foundation to their MRHS solving process. Therefore, we first look at how this method works
visually on the data set. This leads to insights on the structure and behavior of the data that
enabled a new, more successful concept of agreeing.

5.1 Representation
Recall the order of the transformations on the state arrays in AES (pg. 18)

A SRMA . . . SRMA SRMA SRA .

Mathematically speaking, SR is equivalent to RS—both orderings result in the same intermedi-
ate state arrays. In one, the S-box substitution occurs first and then the results are shifted within
the row. In the other, the bytes are shifted and then the substitution occurs. The two operations
are commutative with respect to each other. Therefore, an equivalent representation of the AES
encryption process is:

ARS MARS . . .MARS MARS A. (5.1)

The difficulty in solving AES’s system of equations is the non-linear portion resulting from the
inversion in the S-box. With the ordering shown in Equation 5.1, the S-box is the last operation
in each segment. The steps to the left of the S denotes the input into the S-box. The output
would then affect the next segment. These mathematical operations are conducted within a

35

finite field. Therefore, there are only a limited number of values that the S-box can produce,
giving us the ability to enumerate them.

Let x be the column vector of the system unknowns. This would include the key variables and
variables representing each intermediate state array. For purposes of this equivalent represen-
tation, an intermediate state array is the contents of the AES state array between each segment
in Equation 5.1. Therefore, one can determine a linear combination of these variables that rep-
resent the input to a certain segment’s S-box. Likewise, the output of the S-box can be also
determined as a linear combination of the variables. This is possible because all of the AES
operations (outside of the S-box) are linear in nature. All of these linear steps are incorporated
into the linear side A.

Then each segment of the AES equivalent can be represented as a 2 row equation (Raddum and
Semaev called them symbols, page 27) as follows:

[
input to S box

output of S box

]
−→x =

[
all possible input values

corresponding output

]
. (5.2)

In Equation 5.2, the rows of matrix A represent the input and output of the S-box (respectively).
Similarly, the two-row vectors b represent all the possible field elements (as input to the S-box)
and their corresponding S-box output. We know that at least one of these columns is correct for
the system. Prior to the start of this research, we assumed that there would be a unique solution
to the system. However, this is not always the case for smaller versions of AES. This is because
a cryptosystem only requires that, under a specific key, a plaintext to ciphertext mapping is 1-1
not that only one key can yield a specific plaintext to ciphertext mapping. See Results (Chapter
6) for further discussion on this topic.

Once we find the correct input and resulting output value in Equation 5.2, then the equation set
is linear and easily solved.

5.2 Notation
The following notation is used to create the equations: n is the number of rounds, P is plaintext,
C is ciphertext, I is the intermediate state array after a round key is added, and X is the state
array at the end of the byte substitution operation. Then the process looks like (with output

36

[states])

[P]A [I0]RS [X1] M A [I1]RS [X2] . . . M A [In−2]RS [Xn−1] M A [In−1]RS [Xn] A [C].

This process yields the following algebraic equations:

I0 = P+K0 Xi = S(R(Ii−1)) Ii = M(Xi)+Ki C = Xn +Kn (5.3)

These translate into the following MRHS equations:

[
K0,R(j,k),k

X1, j,k

]
=

[
Sin

Sout

]
+

[
PR(j,k),k

0

]
[

Ii−1,R(j,k),k

Xi, j,k

]
=

[
Sin

Sout

]
where 2≤ i≤ n−1[

In−1,R(j,k),k

Kn, j,k

]
=

[
Sin

Sout

]
+

[
0

C j,k

]
(5.4)

Note that R is just a reordering that moves words to other columns in the same row, so, in terms
of indices

R(j,k) = (j+ k) mod c ,

where (i, j,k) notation refers to (round, column, row) of the appropriate state array and c is the
number of columns in the state array. The expressions Sin and Sout are the collection of inputs
and outputs from the S box. The key schedule equations will be written in terms of columns:

Ki,0 = F(Ki−1,c−1)+ (if c > 1) Ki−1,0 Ki, j = Ki−1, j +Ki, j−1 i, j > 0, (5.5)

where row k of the output of F is

Fk(Ki, j) = S(Ki, j,(k+1 mod r))+2i (if k = 0) .

37

This gives the MRHS equation of[
Ki−1,c−1,(k+1 mod r)

Ki,0,k

]
+

[
0

Ki−1,0,k

]
(if c > 1) =

[
Sin

Sout

]
+

[
0
2i

]
(if k = 0) . (5.6)

Equations 5.4 and 5.6 fully define AES in MRHS notation. See Appendix C for the C code that
creates the AES MRHS equations.

Example of MRHS Equations for 2424 There are 24 equations for the AES case of 2424. 8
MRHS equations are from the key schedule algorithm and 16 are from the AES encryption
algorithm. There are 24 variables in the case of 2424. The first 16 are key variables (8 represent
the initial key and 8 represent the first column of the other round keys). 8 variables are from the
intermediate state arrays.

These first 8 MRHS equations are from the key schedule algorithm.

[
000001000000000000000000
100000001000000000000000

]
−→x =

[
0123456789ABCDEF

7A453F6B8CED2019

]
[

000000100000000000000000
010000000100000000000000

]
−→x =

[
0123456789ABCDEF

6B542E7A9DFC3108

]
[

000000010000000000000000
001000000010000000000000

]
−→x =

[
0123456789ABCDEF

6B542E7A9DFC3108

]
[

000010000000000000000000
000100000001000000000000

]
−→x =

[
0123456789ABCDEF

6B542E7A9DFC3108

]
[

000001000100000000000000
000000001000100000000000

]
−→x =

[
0123456789ABCDEF

49760C58BFDE132A

]
[

000000100010000000000000
000000000100010000000000

]
−→x =

[
0123456789ABCDEF

6B542E7A9DFC3108

]
[

000000010001000000000000
000000000010001000000000

]
−→x =

[
0123456789ABCDEF

6B542E7A9DFC3108

]

38

[
000010001000000000000000
000000000001000100000000

]
−→x =

[
0123456789ABCDEF

6B542E7A9DFC3108

]

These 16 MRHS equations are from the AES encryption algorithm. Note that these equations
have the Mix Columns operations and therefore, have 2 and 3 in matrix A.

[
100000000000000000000000
000000000000000010000000

]
−→x =

[
67452301EFCDAB89
6B542E7A9DFC3108

]
[

000001000000000000000000
000000000000000001000000

]
−→x =

[
32107654BA98FEDC

6B542E7A9DFC3108

]
[

001000000000000000000000
000000000000000000100000

]
−→x =

[
AB89EFCD23016745
6B542E7A9DFC3108

]
[

000000010000000000000000
000000000000000000010000

]
−→x =

[
45670123CDEF89AB

6B542E7A9DFC3108

]
[

000010000000000000000000
000000000000000000001000

]
−→x =

[
1032547698BADCFE

6B542E7A9DFC3108

]
[

010000000000000000000000
000000000000000000000100

]
−→x =

[
67452301EFCDAB89
6B542E7A9DFC3108

]
[

000000100000000000000000
000000000000000000000010

]
−→x =

[
76543210FEDCBA98
6B542E7A9DFC3108

]
[

000100000000000000000000
000000000000000000000001

]
−→x =

[
89ABCDEF01234567
6B542E7A9DFC3108

]
[

000000001000000023110000
000000000000100000000000

]
−→x =

[
0123456789ABCDE

E3DCA6F21574B980

]

39

[
000001000100000000001231
000000000000010000000000

]
−→x =

[
0123456789ABCDE

94ABD1856203CEF7

]
[

000000000010000011230000
000000000000001000000000

]
−→x =

[
0123456789ABCDE

F2CDB7E30465A891

]
[

000000010001000000003112
000000000000000100000000

]
−→x =

[
0123456789ABCDE

0D32481CFB9A576E

]
[

000010001000000000002311
000010001000100000000000

]
−→x =

[
0123456789ABCDE

85BAC0947312DFE6

]
[

000000000100000012310000
000001000100010000000000

]
−→x =

[
0123456789ABCDE

D0EF95C126478AB3

]
[

000000100010000000001123
000000100010001000000000

]
−→x =

[
0123456789ABCDE

49760C58BFDE132A

]
[

000000000001000031120000
000000100010001000000000

]
−→x =

[
0123456789ABCDE

85BAC0947312DFE6

]

The plaintext that created this example is 66A81374. The associated key was 635241A9. The
ciphertext that resulted from AES was 8F96EB2E.

Theorem 1. For this representation of AES variants, we always get k equations in k variables.

Proof. This is a combinatorial proof. First, we count the variables and then count the equations.
There are two types of variables: key variables and intermediate state array variables. Some of
the key variables come from the initial key and others come from the subsequent round keys.
The initial key has r · c words (a.k.a. variables). The subsequent round keys are defined using
Byte Substitution on one column of the key state array. The remainder of the round key is
generated by linear operations. Therefore, there are n · r key variables for the rounds. The state
arrays have r ·c words. The initial state array is the plaintext which is known. The last state array
is the ciphertext which is known. That leaves n−1 intermediate state arrays that are unknown.
This makes the total number of state array variables as (n−1)(r · c). Let k be the total number

40

of variables. Then k = rc+ nr + (n− 1)rc = nrc+ nr = nr(c+ 1). Now, count the number
of MRHS equations. There are two types of equations: key schedule equations and encryption
equations. The key schedule equations express the first column of the key matrix for each round.
There are r entries in the first column. Therefore, there are n · r key schedule equations. Each
round of the encryption algorithm has an S-box. The encryption equations model the input
and output of the S-box. Therefore, there are n · r · c equations to describe each block of the
state array for each round. The total number of MRHS equations are nr+nrc = nr(c+1) = k.
Therefore, our representation of AES variants will always have k equations in k variables.

Theorem 2. The coefficient matrices are independent of field size.

Proof. When creating the equations, A’s rows are linear combinations of the variables repre-
senting the linear components of the AES algorithm. Of the linear operations, it is only during
the Mix Column transformation that a variable would be multiplied by a number other than 0
or 1. Recall that the Add Round Key function adds one value to another value; therefore, the
entries in the coefficient matrix A are either 0s or 1s. The Shift Row function moves the value
from one location to another; therefore, the entries in the coefficient matrix A are either 0s or
1s. The Mix Column function effectively multiples the current state array by a matrix with 0,
1, 2, and 3 as coefficients. All of the entries in the Mix Column matrix (see Figure 3.3) were
01, 02, and 03. Each of these numbers requires only 2 bits to represent. Therefore, whether
the field size is 4, 16, or 256 is irrelevant. All numbers used in the AES MRHS equations are
contained in the last two bits so the values of the co-efficient matrix A are the same. Therefore,
the equations do not change based on the use of GF(22), GF(24), or GF(28).

Once the MRHS equations are constructed for a certain variant of AES, the next step is to solve
by removing RHSs until only one RHS exists per symbol. The resulting−→x has the key variables
within it and yields a set of linear equations which can be trivially solved.

5.3 Graphical Representation
By design, AES has a clear structure that can be expressed mathematically or algorithmically.
Graph theory can also describe this structure. It is upon the visual exploration of AES’s structure
that new insights can be gained and current solving procedures refined.

41

The AES system of MRHS symbols can be represented by a graph. Let a node represent a
RHS in a symbol. If a RHS from symbol A and a RHS from symbol B agree (namely, they
are consistent in their solution(−→x)), then there exists an undirected edge between them. By
Raddum and Semaev’s definition of pairwise agreement, these two symbols agree if every RHS
(node) in symbol A is connected to a RHS (node) in symbol B, and vice versa. Figure 5.1
illustrates two symbols in GF(22) agreeing. This is a bipartite graph.

Figure 5.1: AES; RHS agreement.

As Raddum and Semaev’s agreeing algorithm continues on all pairs of symbols, the result will
be a k-partite graph where k is the number of symbols. The resulting graph depicts information
about the relationships between the symbols. Eventually, this information will yield which
RHSs are inconsistent. This will enable their representing nodes to be eliminated from the
graph. Recall that an edge signifies agreement. Mathematically, this translates into the existence
of a −→x that keeps both symbols consistent (i.e., solvable). The fact that one −→x works on all
symbols is what classifies it as a solution to the system. Therefore, the final solution would
be represented as a complete graph which uses one node from each MRHS symbol, as seen in
Figure 5.2.

Figure 5.2: Graphical representation of the solution of a system with 12 symbols.

42

5.3.1 Agreement

Visually, Raddum and Semaev’s pairwise-agreeing concept is equivalent to determining whether
a connected, bipartite graph exists between every two symbols. If a node has no neighbors
within the connected graph, then it can be discarded. This procedure is executed on all pairs
of symbols. The final solution is represented as a complete graph on n nodes (see Figure 5.2).
To be the solution means that there exists a consistent −→x amongst all symbols. Additionally,
by definition of a complete graph, any subset of the final n nodes is also complete. These ob-
servations led to the idea of applying Raddum and Semaev’s pair-wise agreeing algorithm to
three symbols at a time. Under this idea, for any three symbols, if a RHS is not included in
the connected 3-partite graph—then it can be discarded. Additionally, if a RHS is not used in a
3-cycle, then it can also be discarded.

This is repeated for all combinations of three symbols. By now having two criteria for RHS
removal, we thought RHSs could be deleted faster in the process. A 3-cycle is more complex
than a 2-cycle (yet still easy to detect on a graph using a depth first search algorithm). There-
fore, the assumption is that they should be less common within a graph. This should result in
elimination of nodes more quickly than Raddum’s original process.

The initial implementation of the 3-agree concept used the information already captured in the
original pairwise agreeing procedure. Namely, the implementation constructed an adjacency
matrix representation of symbol A + symbol B agreeing, symbol B + symbol C agreeing, and
symbol A + symbol C agreeing. Search algorithms were then used to search the matrix for
any RHS nodes that were not used in a 3-cycle. The visualization in Figure 5.3 was what we
hoped to find, in which there is only one 3-cycle and, therefore, it represents the solution. While
the concept was sound in theory, the AES equations did not have any RHSs that were not in a
3-cycle. Namely, for any combination of three symbols, there exists a complete graph on the
three symbols. More importantly, the sets of the three RHSs were unique. This result is shown
in Figure 5.4. Therefore, given n RHS in a symbol, there were n complete graphs (representing
possible solutions) to the three symbols.

The concept of 3-agree, while not the panacea, does yield information about the relationships
between various edges and nodes. During testing, it highlights that if a RHS could be removed
from any symbol, then a "cascade" of removals occurs from the graph which ultimately result
in the solution. Unfortunately, the relationships do not tell us which of the RHSs to remove to
achieve the correct solution. Since information is discovered about the AES equation system

43

Figure 5.3: What we hoped to find in 3-agree process.

Figure 5.4: What we found in 3-agree process.

from both the 2-agree and 3-agree algorithms, this leads to the idea of scaling the process to
four symbols and larger. However, the increase in the number of symbols to agree leads to a
significant increase in the size of the adjacency matrix to store. Assuming that there are r RHS
for each symbol and we want to n-agree the system; there are (nr)2 elements within the matrix
and r of the n-cycles to check. This brings us back to the original Raddum and Semaev problem:
excessive memory requirements preclude finding a solution.

However, there is something to this idea. If a different concept of multi-agree (that is more
memory-friendly) could be found—perhaps it could delete RHSs sooner. This would result in
a solution without the need to guess a single variable.

44

Problem: Create a multi-agree algorithm that is memory-friendly. It should successfully
capture all the relevant calculations/relationships between symbols but does not need to
store the information. It will be enough to see the behavior that the symbols have with
each other in order to determine what action (action = removal of RHS) causes the quickest
cascade to the solution.

5.4 Links
What are the required conditions to remove a RHS from a symbol? Recall Raddum and Se-
maev’s procedure (for pairs of symbols) to create the UA matrix (page 29). In order to be able
to remove RHS from a symbol, the UA matrix (resulting from two symbols) must have r > 0.
This condition is equivalent to the existence of a linear combination of rows of A that equal
0. Our new method (which extends Raddum and Semaev’s concept) works on arbitrary sets of
equations (what Raddum and Semaev called symbols) to include using all of the equations at
once.

Unlike the crafted example in Chapter 4, in reality AES symbols typically yield r = 0 for
most pairs of symbols. Therefore, if we could systematically find these linear combinations
considering all the rows of all symbols, then this is called multi-linking. In addition, examining
all the rows of all symbols at the same time is quicker than individually checking all possible
smaller combinations of symbols. These linear combinations (considering all the available
information) generate multi-links.

Therefore, a group of symbols is termed linked if their resulting UA has r > 0. This means that
their concatenation of A matrices is not of full rank, and therefore can be agreed. The number
of symbols used in a link can range from 2 to n, with n referring to the total number of symbols
in the system.

5.4.1 Where do links come from?
It is the structure of the AES system’s equations that dictates the genesis of the links. The spare-
ness of the AES structure creates sparse links. These links connect the AES variables through
the various rounds of AES. The concatenation of the matrices A from the equations in the link
have linearly dependent rows. Therefore, they must share some subset of variables. Hence,
links relate variables to each other through the various stages of the encryption algorithm.

As the AES system is not a randomly generated system but comes from a specific algorithm, the

45

structure of the equations is predictable based on nrce parameters. Therefore, there is benefit to
examining how the system and its links change by modifying the nrce parameters. Perhaps the
information gleaned from smaller cases of AES will apply to the full version as the same type
of equations are similarly linked over various iterations of nrce. This is the idea that lessons
learned from attacking smaller variants of AES will yield relevant information about attacking
the full version of AES.

5.4.2 How are links created?
Our links (which we refer to as multi-links to acknowledge their different creation technique
compared to Raddum and Semaev’s links) result from the application of linear algebra tech-
niques on our MRHS equations. We begin by stacking all the A matrices together from the
individual MRHS equations. Then, we row reduce the resulting large matrix using a LU decom-
position technique. The resulting L matrix contains the record of the elementary row operations
that produced the U (upper triangular) result. It is the bottom portion of L, corresponding to
the all-zero rows of the reduced U matrix, that is the matrix of our multi-links. Therefore, our
multi-links represent the dependence relations of A. We think of our multi-links as the basis for
our link space, the left null space of the big A matrix. As a basis, this independent set of links
captures all of the information about the linear part of the MRHS system.

Our computer algorithm quickly finds a set of multi-links. We refer to this set as the default set
of links. It is interesting to note that many of our links have a preponderance of key schedule
equations within them. This should be helpful as the key variables (which are used in the key
schedule equations) are the most important variables in the system. With more relationship
information about them, the system should be easier to solve for them.

Linear algebra tells us that any linear combination of a basis for a vector space is also an ele-
ment of the vector space. Therefore, any linear combination of our multi-links will provide an
alternate link in the link space. Solving the MRHS system with the new multi-links will also
yield the solution. We refer to these alternate multi-links in this research as dependent links.
This is in order to differentiate them from our default set of generated multi-links. Our computer
program has the added functionality to create these user suggested dependent links. It creates a
custom designed multi-link that features specific equations which should help solve the target
system. Once the user has provided all the custom links that they need, then the algorithm will
create the remainder of the multi-links necessary to fully describe the link space. This is akin
to using a different basis to describe the system. These custom multi-links can occasionally be

46

helpful to solve the system when using more than one plaintext/ciphertext pair. See Section 6.4
for a discussion on using more than one pair of plaintext/ciphertext.

Theorem 3. For our representation of AES MRHS equations, there are (at least) k multi-links

associated with them.

Proof. The AES MRHS equations have k variables in k equations. Take all the A matrices of
the MRHS equations and stack them. The result is a matrix with 2k rows and k columns. Any
matrix can be reduced by elementary row operations to a matrix in reduced row echelon form.
A matrix in reduced row echelon form can have a maximum of one pivot per row. Therefore, the
stacked A matrix has, at most, k pivots. All rows without a pivot are rows of zeros. Therefore,
there are at least k rows of all zeros because there are a total of 2k rows in A. The rows of
all zeros result from a distinct linear combination of the original rows that equal 0. This is
the definition of our multi-links. Therefore, we will always have at least k multi-links for the
system. Also, since the L matrix is row-equivalent to an identity matrix, these multi-links are
linearly independent.

Theorem 4. The link structure is independent of e.

Proof. The left side of the MRHS equations is the same no matter what field size used in this
research. Therefore, the row reduction of the A matrices is the same no matter the field size. The
multi-links come from the elementary row operations conducted on the A matrices. Therefore,
the multi-links are the same for each field size used in this research.

5.5 Multi-Agreeing
Raddum and Semaev’s method of agreeing used their links (consisting of only two symbols)
and was performed on one link at a time. The issue is that AES begins in an agreed state. This
forced them to use the techniques of gluing and guessing to find a solution to the system. These
are expensive operations (in both time and memory). We now have our new multi-links. We
could try to agree each multi-link one at a time (like Raddum and Semaev) but we run into
the same problem, that AES still starts in an agreed state. Therefore, we extend Raddum and

47

Semaev’s agreeing concept in a similar fashion to what we did with the links. Instead of just
looking at one multi-link at a time, we will look at several multi-links at a time. While there
could exist more elegant ways of conducting this operation, our method is straightforward and
successful.

Our new process is called multi-agreeing to differentiate from Raddum and Semaev’s process. It
is based on the idea that the generated set of multi-links can be agreed in a specific order to yield
the answer (i.e., solve the system). Agreeing the multi-links in any order will solve the system,
as they contain all the relationship information about the system. However, some orderings of
the multi-links return the solution more efficiently than others. First, I will explain the concept
of multi-agreeing and then discuss the methodology for creating an efficient ordering.

Start with a multi-link; call it Li. This multi-link consists of the information from n equations
and utilizes m variables. Operating within a finite field, there are a limited number of possible
values for each variable. In fact, since each equation has 2e different RHSs to choose from,
then there are 2en possible combinations of RHSs. However, the multi-link specifies a linear
dependency amongst the equations. Recall the corresponding linear combination of RHSs must
sum to the value zero, in order for that combination of RHSs to be consistent with that multi-
link. We now use this information to choose one RHS of the combination, given the other
n− 1 RHSs of the combination. So, there are 2e(n−1) combinations of RHSs of the equations
involved in the multi-link that are consistent with the multi-link. These possibilities can be
visually represented as complete subgraphs on the graph, and we refer to them as RHS sets.

Then we proceed to add one multi-link at a time to the current set of ‘agreed’ multi-links.
Choose another link L j which includes s equations that are not in Li or any other previous
link. The RHSs of these new equations are then constrained only by the new linear dependence
relation of the new multi-link: one new relation involving s new choices. So RHSs can be freely
chosen for s− 1 of these new equations, and we can solve for the RHS of the remaining new
equation. Hence

the new number of RHS sets = (previous total) · (2e)s−1. (5.7)

Based on Equation 5.7, each new link that is agreed in this process can increase, decrease, or
not change the number of consistent RHS sets. Namely, the number of consistent RHS sets
is increased whenever two or more new equations are added to the current listing of agreed

48

links via a new link. The number of consistent RHS sets remains the same when only one
new equation is added to the set. The number of consistent RHS sets is decreased when a new
link uses no new equations but adds additional relationship information into the agreed list of
links instead. This case results in the number of possible solutions being reduced by a factor of
the field size and possibly RHSs being eliminated. We call this case a “check-for-consistency”
amongst all the information already gathered about the variables and their relationship to each
other.

As more and more links are agreed, it becomes quite infeasible to store (in memory) the values
of the consistent RHS sets. In our multi-agreeing process, it is enough to know the number
of sets that exist at any given point. Recall that the intent of the multi-agreeing process is to
eliminate RHSs. Therefore, until we reach a point where that is possible—it does not matter
what the specific consistent RHS sets are.

It is only in the third case (number of consistent RHSs decrease) that we actually need to check
all the RHS sets to see if a RHS can be deleted. Since we don’t keep track of the various RHS
sets, we must recreate them each time that we hit a check-for-consistency. The total number
of consistent RHS sets can grow quite large, so we do not store them in memory. Instead, the
process just tracks if a specific RHS can be deleted (i.e., it does not appear in any consistent
set of RHSs). This methodology allows us to turn Raddum’s memory-intensive process into a
time-intensive process. Therefore, we want to keep the possible solutions sets small (to speed
up the process) which means we want to keep the number of new equations (also known as the
number degrees of freedom in the creation of consistent RHS sets) added each time to be small.

Towards the end of the multi-agreeing process, RHSs are eliminated from equations due to
the checks for consistency. This is because eventually the system contains enough information
about the relationships between the variables that some of the edges in the graph can be removed
and, ultimately, nodes (RHSs) are detached from the connected graph. This means that they do
not contribute to the final solution (recall Figure 5.2), and they can be deleted from our MRHS
equations.

In this way, we reach the solution to the AES system of equations by only using the processes
of multi-linking and multi-agreeing. Both of these processes require relatively little memory
and can run on a standard PC. For the small-scale AES variants in this research, I used a 2.20
GHz AMD processor with 4 GB of total memory. Table 5.1 shows the time required to solve a
sample of AES cases. The AES variants of 6442 and 7442 were not computed in this research

49

as they were not necessary to find the order for A442. It is our belief that the code used to
implement multi-agreeing could be modified to take advantage of multiple computer processors
when searching for RHSs to be deleted. This would significantly speed up the times recorded
in this dissertation.

nrce time nrce time nrce time
3424 0h 50m 3244 0h 13m 3442 0h 36m
4424 1h 26m 4244 1h 28m 4442 1h 59m
5424 2h 32m 5244 1h 49m 5442 3h 12m
6424 3h 46m 6244 2h 50m
7424 5h 12m 7244 3h 40m
A424 5h 36m A244 7h 12m A442 17h 29m

Table 5.1: Sample of AES solve times.

5.5.1 How decide order for multi-agreeing?
Given n links there are n! possible orders to agree the generated links. Order matters because the
number of new equations brought into the agreed set each time determines how often and how
many RHS sets are checked within the program. Therefore, we strive to make the agreement
order the most efficient in terms of size of sets.

Example. In the case of 2442, I ran the multi-agreeing algorithm two ways. The first used the
lexicographic ordering of the links. This ordering required 9 minutes and 45 seconds to find
the solution. The second ordering used my methodology discussed in Chapter 6. This took 2
seconds to find the solution. This is an improvement of three orders of magnitude. A similar
improvement occurred in other cases.

Hypothesis: At least one agreeing order is more efficient than others. Efficiency is defined as
less time consuming. There exists a most efficient way to agree the links.

An exhaustive check of all possible orders is not feasible, given that the number of links ranges
from 10 to 200 for the various small scale variants of AES tested in this research. Therefore,
various strategies are created and experimented with in this research. The goal is to find efficient
orderings which minimize the number of new equations (degrees of freedom) added with each
increase of the agreed link set. Three strategies are discussed in this section.

Strategy #1. Begin by picking a start link and a destination link. Then use the other links to
introduce the missing equations from the destination link into the agreed set. Once all these

50

equations are in the agreed set, this enables the destination link to be a check-for-consistency
link. The refinement of the idea was to pick two links (as the start and destination) that were
similar in equation content in the hope that the check-for-consistency could occur after only a
few additional links were added.

In AES, the equations featuring the later state arrays were not as prolific in the link structure.
This observation influenced the strategy. In fact, for many of the later equations, there were
only two links (from the default link set) that use them. These became the start and destination
links. The start link was designated as the link that used the least number of equations in it.
The ordering of the middle links was focused on bringing in the missing equations so that a
check-for-consistency was quickly reached with a minimal increase to RHS set size. The issue
with this strategy is that it was difficult to transition from the start to destination link without
adding multiple new equations with each link. To counter-balance this, sometimes dependent
links could be created to assist. While dependent links helped reduce the size of consistent RHS
sets to check, it increased the number of links to process within the program. Additionally, it
was difficult to find dependent links that were actually helpful.

link number equations in link new eqns to order # degrees of freedom
Link #8 1,5,9 1,5,9 2
Link #0 0,5 0 2
Link #5 1,3,7 3,7 3
Link #9 0,1,3,9 none 2
Link #7 0,1,3,8 8 2
Link #6 0,1,4,8 4 2
Link #4 0,2,3,7 2 2
Link #1 0,1,2,3,4 none 1
Link #2 0,2,6 6 1
Link #3 0,1,2,6 none 0

Table 5.2: Example of strategy #1.

Table 5.2 gives an example of an ordering using strategy #1 with the default set of links for 214e.
The links are listed in the order of multi-agreeing. The first column gives the link reference
number from the process of creating the default set of links. The second column lists the MRHS
equation numbers that are part of the specific link. The third column denotes which of the
equations are new to the ordering with the addition of the link. The last column gives the count
of the degrees of freedom once the link is added to the agreeing ordering. For this example the
inclusion of Equation #9 defined the start and destination links, Links #8 and #9, respectively.

51

This strategy worked with small nrce varients of AES. It failed horribly on large variants of AES
due to the long processing times. This strategy also showed how important the key variables
and key schedule equations were to the various links. Even with its shortcomings, this strategy
did find the solution to the system faster than by just using the numerical order of default links.

Strategy #2. Begin with the link that has the bulk of the key equations in it. Those equations (and
their respective variables) affect the other equations the most and produce the most relationships
amongst the other equations. Once the start link is chosen, then use the other relationships
between variables to see where the quickest check-for-consistency could occur amongst the
state equations. Based on the structure of AES, this would occur in the equations representing
the later state arrays. Table 5.3 gives an example of an ordering using strategy #2 with the
default set of links for 214e. This is the same case as shown in Table 5.2.

link number equations in link new eqns to order # degrees of freedom
Link #1 0,1,2,3,4 0,1,2,3,4 4
Link #0 0,5 5 4
Link #2 0,2,6 6 4
Link #3 0,1,2,6 none 3
Link #5 1,3,7 7 3
Link #4 0,2,3,7 none 2
Link #6 0,1,4,8 8 2
Link #7 0,1,3,8 none 1
Link #8 1,5,9 9 1
Link #9 0,1,3,9 none 0

Table 5.3: Example of strategy #2.

This strategy produced better results than the first strategy. However, there were still flaws.
Using a large first link (meaning it causes a large number of RHS sets) did not take into con-
sideration the structure of the equations. It focused on the quantity of equations instead of the
quality of relationships between the equations.

Strategy #3. In an effort to better explore the relationships between the links, Strategy #3 was
created: an agreeing tree. The purpose of the tree was to choose the cheapest (in terms of the
introduction of free equations) sequence of links to agree.

This strategy consists of three parts: 1) determine the root of the tree, 2) create the agreeing tree,
and 3) search the tree. Structurally, this tree consists of nodes and weighted, directed edges. The
nodes represent links. The edges are weighted based on the number of free equations that are

52

added to the order when agreeing one link to the next. Also, these are directed edges because
order matters.

Part I of this strategy is to determine the root of the tree. This is based on how cheaply the
starting link (tree root) can move to the next link. Recall that we are ultimately looking for
an ordering that minimizes the number of free equations added with each link. During testing
of larger nrce variants, it was found that a threshold on the size of the starting link was also
necessary. For illustration purposes, the 222e case is shown in this section.

Figure 5.5: Determine root of the agreeing tree.

Figure 5.5 shows the starting possibilities. Each node is a multi-link. The edges in the graph
represent an order that results in one free equation being added. Therefore, it suggests that
either Link #2, #3 or #5 should be the root. For purposes of this explanation, Link #3 is chosen.

Part II of this strategy is to create the agreeing tree. The tree starts with the root node. Dif-
ferent branches are added that correspond to options in an agreeing order. Due to the fact that
minimization of the number of new equations at each link is the goal—thresholds are placed
on the branches. Namely, the first option is to only use paths that have one free equation. This
worked to create the agreeing tree for 222e. However, when creating the agreeing tree for 244e,
branches terminated early. Therefore, links that added two free equations were allowed to be
considered in larger cases.

Tree construction continues until the leaf node is reached (i.e., the path has every possible link in
it). The overall value of this path (sum of the weights of its edges) is its utility score. The lower
the score, the better. Once the first path is successfully created and its utility score calculated,
this becomes another threshold on the tree. This allows other paths to be terminated early if
they were going to reach a utility score larger than the current best. While I perform these

53

calculations manually, they could be easily run on parallel processors for larger variants.

The 222e case is continued for illustration purposes. Figure 5.6 shows the selection of the root
node. The nodes on the left of the arrow show the options for tree branches. The graph on the
right of the arrow shows the resulting agreeing tree.

Figure 5.6: Step 1 of agreeing tree.

Now that Link #3 and #11 are used in the agreeing tree, this creates a new “super” node when
examining our next possibilities. This is the node N on the left hand side of Figure 5.7. This
graph on the left now shows all the current link orders that would result in one free equation.
There are four options at this point (shown as four directed edges). As this example is for
illustration purposes, we focus on the paths that link the node N to other links instead of starting
a new tree. Therefore, there are only two options (branches) for the tree (Link #0 or Link #1).
This is shown on the right hand side of Figure 5.7.

Figure 5.7: Step 2 of agreeing tree.

The 222e example continues down the left-most branch of the tree. Now, there is only one
option for a link that results in only one free equation being added. Therefore, Figure 5.8
follows easily.

54

Figure 5.8: Step 3 of agreeing tree.

At this point, there are two options for the continued construction of the agreeing tree. Figure
5.9 shows the options as Link #2 and Link #10.

Figure 5.9: Step 4 of agreeing tree.

This construction process continues until all possible branches are created from using Link #3
as the root node of the agreeing order.

Part III of this strategy is to search the tree. This part is fairly trivial once the tree is constructed.
In fact, depending on how the algorithm is programmed, this could be done in parallel with the
tree construction depending on available resources. Regardless of when this part of the strategy
is actually executed, common search algorithms can be used. They traverse the various paths to
determine 1) if it was a full path (had all the link nodes—therefore, would be a valid ordering)
and 2) its utility score. To ensure that edges denoting one free equation were significantly better
than two, a weighting factor is used. An example of a weight scheme is to allow paths with one
free equation to have a value of one, paths with two free equations to have a value of ten, paths
with three free equations to have a value of one hundred, and so on. Once the smallest utility

55

value is found, the agreeing order is set.

5.5.2 Structure
Ultimately, the structure of AES should guide this research to an efficient order of multi-links
to use in the multi-agreeing process. This is because the MRHS equations are not a randomly
generated set of equations, but are based on the AES algorithm which is known. Therefore,
structure should help.

In this research, I analyze small variants of AES to look at the structure of the symbols, their
resulting links, and how these things might affect the agreeing order.

What does the number of rounds do to the AES structure?
The two-round version of AES (n = 2) fails to hold some of the algebraic properties of ten-
round AES. In fact, it always has interesting side effects and relationships that make solving
the system easier than other round totals. This is because in the two round version of AES:
1) the Mix Column function is only used once, 2) equations only involve variables from one
state array instead of multiple ones, and 3) some of the link equations provide a relationship
between the first state array and the last one. Namely, it links the plaintext to the ciphertext
directly. Because of these unique relationships, two-round versions of AES are interesting but
not extremely helpful in determining an ordering for multi-agreeing links of larger round AES
variants.

The three-round version of AES begins to showcase all the features of 10-round AES. In gen-
eral, once an efficient agreement order is determined for three rounds, the concept scales up to
ten rounds. Efficiency is defined by minimizing the number of free variables in the ordering.
The only exception to this observation was the case of 3244. In fact, I found a speedy ordering
to 3244 that could not scale up to 4244 and beyond.

Based on this anomaly, I choose four rounds of AES as the minimum n to create an agreeing
order for before I attempted to scale to ten rounds. Four rounds was still very manageable to
gather good insights on how the various symbols and variables interact with each other while
efficiently looking for patterns. The ordering found for four rounds is carefully scaled to ten
rounds to ensure time comparisons could be made. Table 5.4 provides a snapshot of the size of
systems this research explores.

56

n # MRHS eqns # variables
2 40 40
3 60 60
4 80 80

10 200 200

Table 5.4: n44e AES system size.

What does word size do to the structure?
The options for field size in AES are 22, 24, and 28. This corresponds to words of length 2
bits, 4 bits or 1 byte. I use e = 2 to perform calculations by hand while developing the methods
and analyzing patterns. The only issue with the 4-element field is that all possible S-boxes are
affine. While not changing the matrices A or the actual multi-links, an agreeing order in this
field will delete RHSs sooner and achieve a solution faster. Therefore, it can skew the expected
results for larger fields. In this research, once an ordering for a nrc variant is found, it was run
on e = 2 to to test the ordering for correctness and speed prior to executing on the larger fields.

The only difference between e = 4 and e = 8 is that in e = 4, blocks of the state array and
key matrix are presented by one hexadecimal character while in e = 8, blocks require two
hexadecimal characters to hold their value. Everything else is identical with respect to the
relationships and structure of the system. Therefore, the most efficient ordering for multi-
agreeing is the same. This is quite helpful in analyzing AES as testing could be realistically
performed on orderings of links in the 16-element field using current computers in a realistic
amount of time which would take too long in the field of 256 elements.

How does a “tall and skinny” state array affect the structure?
A tall and skinny state array occurs when r > c in a variant of AES. In this research, n41e

and n42e small scale variants of AES are analyzed. This shape also showcases the affect of
the Mix Columns function on the structure. Ultimately, an increased percentage of the MRHS
equations for these systems are from the key schedule algorithm. Therefore, more key variables
are present in the links in general. The links are also more sparse of equations. The links from
n41e have between two and six equations in each link with an average of 3.5 equations per link.
The links from n42e have between two and fourteen equations in each link with an average of
6.5 equations per link. The sparseness of the links and greater number of MRHS equations to
describe these systems, make them slower to solve than their “short and fat” counterparts.

57

How does a “short and fat” state array affect the structure?
A “short and fat” state array occurs when c > r in a variant of AES. In this research, n14e and
n24e small scale variants of AES are analyzed. This shape also showcases the affect of the Shift
Rows function on the structure. Ultimately, an increased percentage of the MRHS equations
for these systems are from the encryption algorithm. Therefore, more state array variables are
present in the links in general. There are also fewer total equations (and therefore links) for this
shape. The links from n14e have between two and eleven equations in each link with an average
of 4.6 equations per link. The links from n24e have between two and thirteen equations in each
link with an average of 5.5 equations per link. This shape routinely solves itself faster than the
“tall and skinny” AES shape.

How does a square state array affect the structure?
A square state array occurs when r = c in a variant of AES. In this research, n22e and n44e

small scale variants of AES are analyzed. The links from n22e have between two and thirteen
equations in each link with an average of 5.4 equations per link. The links from n44e have
between two and fifteen equations in each link.

Finally, it is interesting to note that, contrary to the results obtained by Raddum and Semaev,
there does not always exist an unique solution to the AES MRHS system of equations. Their
technique (revolving around guessing to determine the final answer) yields an answer—but
gives no indication if another answer also exists. Our method of extending agreeing and linking
into multiples, completely solves the system, and provides all of the solutions upon completion.

The insights gained from all these strategies and AES’s structure led to the creation of an agree-
ing order scheme for the various nrce variants of AES. The orderings are discussed in Chapter
6 along with the time and solution results.

58

CHAPTER 6:

Results

Small scale variants of AES showcase the algebraic properties of full AES. By understanding
the relationships between the transformations, you can create an efficient ordering of multi-
links for processing in the multi-agree algorithm. This chapter gives the timing results and
insights determined from exploring nrce variants of AES. All AES results are computed on a
2.2 GHz AMD processor with 4 GB of memory. This chapter also presents other researchers’
timing results for a comparison on small scale variants. This chapter then explains the model we
created to estimate the time needed to find a solution in larger variants of AES (to include A448).
Finally, this chapter presents the results from attempting to use multiple plaintext/ciphertext
pairs to more quickly find solutions.

6.1 Results of New Method
Ultimately, it came down to looking for and identifying patterns within the data. Two different
mappings were useful in determining an agreeing order. The first is a mapping of multi-links
to equations for a given nrce. This assists in visualizing free equations and link relationships.
Table 6.1 gives an example of this mapping for the 2144 case. The ’x’ denotes that the equation
is present in the multi-link.

equations
links 0 1 2 3 4 5 6 7 8 9

0 x x
1 x x x x x
2 x x x
3 x x x x
4 x x x x
5 x x x
6 x x x x
7 x x x x
8 x x x
9 x x x x

Table 6.1: 2144 links - equations mapping.

The second useful mapping is a mapping of variables to links. Each multi-link uses an equa-
tions’ top row (input to S-box), bottom row (output of S-box), or both rows to express the de-

59

pendence relationship. Various variables are involved in each row in the equation. This mapping
denotes which variables are actively used in the link and which variables came along because
they are in the unused row of the link’s equations. This is important because these variables
(used or not used in a link) can influence the remainder of the multi-agreeing order. Table 6.2
gives an example of this mapping for the 2144 case. The ’•’ denotes that the variable is used in
the link and the ’◦’ denotes the variable is in an unused row of the link’s equations. These two
visualizations, along with an understanding of the structure of the system of equations, enables
an ordering to be selected.

variables
links 0 1 2 3 4 5 6 7 8 9

0 ◦ • ◦ ◦
1 • • • • • ◦ ◦ ◦ ◦
2 • ◦ • ◦ •
3 • ◦ ◦ ◦ • • ◦
4 • • ◦ • ◦ ◦ •
5 • ◦ ◦ • • ◦
6 ◦ • • • • ◦ •
7 ◦ • • • • • ◦ ◦
8 • • • • ◦ •
9 ◦ • ◦ • • • ◦ ◦

Table 6.2: 2144 links - variables mapping.

The results in this section are organized by the shape of the AES state array (defined by rc

variables). The different shapes require different ordering schemes to solve the system. In
general, once an ordering is found for four rounds of the shape, it is easily scaled up to the ten
round version of the shape. In the following cases, I describe the final method used to find the
key. Many different orderings were attempted to reach the final results. See Appendix D for the
C code that implements our methods on AES cases.

n14e

Using the visualization from the two mappings and an understanding of the AES structure, a
link ordering is created for n14e. There are four interesting observations about the shape of this
state array. The first observation is that a two round version of this shape is very different from
the other round versions. This confirms the uselessness of watching n = 2 operate. Therefore,
the focus is on creating an efficient ordering for n > 2 rounds instead. The second interesting
observation is that only one link used variable #0. This is a key variable so it is important to
get into the ordering. The link with this variables is first used as a possible start point for the

60

multi-agreeing order. However, there are too many free equations within this link to create an
efficient multi-agreeing order. The consequence of this observation is that any viable ordering
must have the other equations (in this link) in the agreed set prior to including this link. This
enables the number of consistent RHS sets to not increase. The third observation is that all the
links with state array equations also had multiple key equations in them. This reinforces the
concept that we have to introduce the key equations into the multi-agree ordering first before
bringing in the least-used state array equations. The final interesting observation is that there
are no groupings of sequential state array equations in the multi-links because the Shift Rows
transformation has no impact on this shape. These groupings of sequential equations increase
the complexity of finding an efficient multi-agreeing order (as will be seen in the other AES
shapes).

Recall that the multi-agreeing order focuses on minimizing the number of free equations in-
troduced into the order with the inclusion of each multi-link. In determining a multi-agreeing
order for this shape, I use a ceiling of four degrees of freedom. This is equal to the number of
initial key variables in this shape (r · c). This corresponds to 65,536 consistent RHS sets with a
4-bit word. This number is chosen based on how large the number of RHS sets grow with an
8-bit word.

Various orderings of multi-links were tested on the smaller n variants of this shape. Once a
likely ordering candidate is found, it is scaled up to larger n cases. This is done by matching
multi-links from one case to the next using the mapping of links to variables. Once the matching
is complete, the new n case has its links placed in the same relative order as the smaller n case.
This is extremely helpful as it enables the bulk of testing to be conducted on cases that are small
enough to quickly run on the computer. Throughout this research, if an ordering is created for
an AES variant with n≥ 4, then it can be successfully scaled up to n = 10.

The final ordering methodology for this AES variant utilizes a starting link with only key vari-
ables in it. Additionally, this starting link has to contain fewer equations than the link with
variable #0 in it. There are only three links that match this criteria within the n14e shape. All
possible orderings of these links are tested to find the best results. The final efficient order
brought these three links in first, which resulted in Equations #0 through #7 being in the agreed
set. By agreed set it is meant that the equations exist in a multi-link in the current order. This
means that their information and structure can be used to bring the next multi-link into the order.
The next multi-links are placed in the multi-agreeing order in such a fashion that the remaining

61

free equations are introduced in numerical order (8, 9, 10, ...). The agreeing order of multi-links
for the case of 3144 is shown in Table 6.3 to assist the reader in their understanding of this
process.

link number new eqns to agreed set # degrees of freedom comment
Link #4 0,1,2,3,5 4 link with only key variables in it
Link #0 4 4
Link #2 6 4
Link #6 7 4
Link #1 8 4
Link #3 9 4
Link #5 10 4
Link #7 11 4
Link #8 – 3 check-for-consistency
Link #9 12 3

Link #10 – 2 check-for-consistency
Lnk #11 13 2
Link #12 – 1 check-for-consistency
Link #13 14 1
Link #11 – 0 solved with this check

Table 6.3: Agreeing order for 3144.

Utilizing this ordering concept, the multi-agree function is triggered four times in the program.
Recall that this function is triggered when no new equations are added with a multi-link, re-
sulting in a check-for-consistency. Of the four, only the last two multi-agrees delete RHSs.
Therefore, I suppress the program from executing the first two. This saves time and did not af-
fect the completion times of the multi-agrees that did delete RHSs. That left two multi-agrees to
execute. The first one deletes approximately 34% of the RHS and then the second one removes
the remainder of the non-solutions. Table 6.4 displays the nrce value, the number of solutions
found, and the amount of time to solve these variants. While the program correctly finds the
solution each time, in some cases additional solutions are also found which indicates that, under

nrce # soln’s time nrce # soln’s time nrce # soln’s time
2142 1 0.001s 2144 3 0.003s 2148 4 10.461s
3142 1 0.001s 3144 3 0.019s 3148 2 20m 54s
4142 1 0.001s 4144 1 0.051s 4148 1 53m 58s
A142 1 0.004s A144 2 0.209s A148 4 3h 47m 3s

Table 6.4: n14e AES results.

62

certain conditions, multiple keys can take a single plaintext and turn it into a single ciphertext.
This is a very interesting result.

n24e

Now that an efficient agreeing order for n14e is found, this assists in our creation of an agreeing
order for n24e. The major difference in this AES shape is that there are now pairs of sequential
equations in the multi-links that come from sequential state array variables. Table 6.5 illustrates
the two pairs of sequential equations (Equations #8 and #9, Equations #10 and #11). This is be-
cause the Shift Rows transformation now manipulates this shape. Luckily, for the construction
of our agreeing order, this shape also has multi-links that bring in each pair of the sequential
equations separately. In Table 6.5, it clearly shows that Link #3 has Equation #8 without Equa-
tion #9 and Link #1 has Equation #9 without Equation #8. However, these links also include
many of the lower-numbered equations (which have many key variables). Therefore, the multi-
agreeing order concept for n24e is to first bring in the low-numbered equations (focused on the
most prolific ones). For example, in Table 6.5, these would be Equations #0 through #7. The
most prolific equations in this shape are Equation #0 and #2 which are each in the majority of
the links. Once the first eight equations are introduced into the agreed set via the multi-agreeing
order, the state array equations are brought into the agreed set separately. In Table 6.5, these
would be Link #3 to bring in Equation #8, Link #1 to bring in Equation #9, Link #10 to bring in
Equation #10, and then Link #2 to bring in Equation #11. This process minimizes the number
of free equations associated with each multi-link.

However, the problem remains to establish the beginning of the agreeing order which brings
Equations #0 through #7 into the agreed set. I tried quite a few different combinations to pick
the best starting multi-link for the process. Experimentation shows that the best multi-link to
start the multi-agreeing order with was a link of five equations. Then, all the links with one
free equation are added to the order until only links with two or more free equations are left.
Therefore, the number of consistent RHS sets has to increase. However, the next most efficient
multi-link to agree has three free equations (causing a large increase in the number of consistent
RHS sets). This link is specifically chosen because it incorporated the two most commonly
used equations. Ultimately, it proves more efficient to add these three free equations with this
multi-link, than to use a less dense multi-link next in the agreeing order. Eventually, the links
with one free equation are exhausted and a link with two free equations joins the agreeing order.
This multi-link is chosen because it uses the last key equation missing from the agreed set. The
remainder of the multi-links fell into the agreeing order without increasing the consistent RHS

63

equations
links 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 x x
1 x x
2 x x x x x x
3 x x x x x x
4 x x x x
5 x x x x
6 x x x x x
7 x x x x x x
8 x x x x x
9 x x x
10 x x x x x
11 x x x
12 x x x x x
13 x x x x x
14 x x x x
15 x x x x x
16 x x x x
17 x x x x
18 x x x x x x
19 x x x x

Table 6.5: 2244 links - equations mapping.

set count. This concept results in eight degrees of freedom (note that r · c = 8 for this shape).

To scale this ordering from n to n+1, the mappings of links to variables is examined. Each link
has an unique profile in this table. Therefore, it is fairly straightforward to scale this ordering
from n-to-n using this information. This also ensures that the same concept is used for a specific
rc shape so that timing comparisons can be made in reference to the number of rounds and the
field size.

With this ordering concept, the multi-agree function is triggered six times in the program. Of
the six, only the last two multi-agrees delete RHSs. Therefore, I suppresses the program from
executing the first four. That leaves two to execute. The first one deletes an average of 28%
of the RHS from the equations. This deletion percentage ranges of 21-33% across this shape
variant. The second multi-agree removes the remainder of the non-solutions. Table 6.6 displays
the results. There are no listed times for the e = 8 versions of this shape. This is because
they take longer than 300 hours to run on a single processor. Estimations for their run time is

64

discussed in Section 6.2 and listed in Table 6.26.

nrce # soln’s time nrce # soln’s time nrce # soln’s time
3242 1 0.019s 3244 2 13m 20s 3248 ? ?
4242 4 0.090s 4244 2 1h 27m 33s 4248 ? ?
5242 2 0.110s 5244 6 1h 48m 31s 5248 ? ?
6242 2 0.166s 6244 2 2h 49m 36s 6248 ? ?
7242 4 0.220s 7244 3 3h 39m 40s 7248 ? ?
A242 4 0.258s A244 2 7h 11m 40s A248 ? ?

? No solution found within 300 hours of computation time.

Table 6.6: n24e AES results.

n41e

Using the visualization from the two mappings and an understanding of the AES structure, a link
order is created for n41e. Three interesting observations are deduced from this AES shape. The
first observation is that the size of the groupings of state array equations is equal to the number
of rows in the state array. Since r = 4 in this shape, there are groupings of four sequential state
equations in the links. In Table 6.7, the reader can see the first quad of sequential equations
consists of Equations #12, #13, #14, and #15. The second quad consists of Equations #16, #17,
#18, and #19. Like the previous case (n24e), there are also links that include each of these quad
equations independently. In Table 6.7, Link #0 has Equation #12, Link #2 has Equation #13,
Link #3 has Equation #14 and Link #4 has Equation #15. These are the equations in the first
quad.

The second observation is that the links for n41e are more equation sparse than the links for
previous shapes. Therefore, there is less information per link in this nrce. The consequence is
that it takes more links to reach a check-for-consistency. This is why this shape is slower to
solve than the equivalent n14e cases.

The third observation is that the links are more intertwined than previous shapes. The mapping
of links to equations for the 3414 AES variant is shown in Table 6.7. Notice that the links
with the single equations from the second quad have the entire first quad in them. For example,
Link #8 has Equation #16 without its quad. However, Link #8 also has Equations #12-15 (first
quad) in it. Therefore, a viable agreeing order introduces the first quad of equations as soon as
possible, definitely prior to the other state equations. In this example, Equations #12-15 need to
enter the agreed set as quickly as possible. Therefore, Links #0, #2, #4, and #6 are toward the
beginning of the agreeing order.

65

equations
links 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 x x
1 x x
2 x x
3 x x
4 x x
5 x x
6 x x
7 x x
8 x x x x x x
9 x x

10 x x x x x x
11 x x
12 x x x x x x
13 x x
14 x x x x x x
15 x x
16 x x x x x x
17 x x
18 x x x x x x
19 x x
20 x x x x x x
21 x x
22 x x x x x x
23 x x

Table 6.7: 3414 links - equations mapping.

66

For all sizes of n, the first set of links in the multi-agreeing order are Link #0, #2, #4 and #6.
Each of these links have two equations in them—one of the state equations and one of the
key equations. After starting the order with these four links, the first quad of equations is in
the agreed set along with the first four key equations. The remaining equations are introduced
into the agreed set in numerical order. Namely, based on Table 6.7, the agreeing order continues
with Link #15 (Equation #4), Link #7 (Equation #5), Link #3 (Equation #6), Link #11 (Equation
#7), etc. Each of these links brings only one new equation into the order and therefore, does not
increase the RHS set count. The ordering results in a maximum of four degrees of freedom.

With this ordering concept, the multi-agree function is triggered four times in the program. Of
the four, only the last two multi-agrees delete RHSs. Therefore, I suppress the program from
executing the first two. That leaves two to execute. The first one deletes approximately 36% of
the RHS and then the second one removes the remainder of the non-solutions. Table 6.8 shows
the results.

nrce # soln’s time nrce # soln’s time nrce # soln’s time
3412 4 0.002s 3414 1 0.052s 3418 5 50m 22s
4412 1 0.002s 4414 1 0.079s 4418 2 1h 21m 10s
5412 4 0.003s 5414 2 0.062s 5418 2 1h 11m 43s
A412 1 0.006s A414 2 0.267s A418 1 4h 29m 51s

Table 6.8: n41e AES results.

n42e

Now that an efficient agreeing order for n41e is found and lessons learned, this assists in our
creation of an multi-agreeing order for n41e. In this shape, there are groups of four sequential
state array equations in the multi-links due to r = 4. There are also links with each quad equation
separate but these links are scattered throughout the default link structure. See Table 6.9 for
a portion of the mapping of links to equations in the 3424 case. Notice that the first quad
uses Equations #12-15. Now, Link #15 has Equation #12 as a single, Link #1 has Equation
#13, Link #5 has Equation #14 and Link #9 has Equation #15. The other major difference
in n42e compared to n41e is that some of these singles are tied to more than one key equation.
Therefore, quick and easy orderings are not possible. For example, there are three key equations
in Link #5 and three in Link #15. In general, the multi-links that contain the singles of the quads
also include one to three key equations with them.

67

equations
links 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26

0 x x
1 x x
2 x x x x
3 x x x
4 x x x x x x x
5 x x x x
6 x x x x x x
7 x x x
8 x x x x x x x
9 x x

10 x x x x x x
11 x x x
12 x x x x x x
13 x x
14 x x x x x x x
15 x x x x
16 x x x x x x
17 x x x x
18 x x x x x x
19 x x x
20 x x x x x x x
21 x x x x
22 x x x x x
23 x x x x
24 x x x x x x x
25 x x x
26 x x x x x

Table 6.9: Portion of the 3424 links - equations mapping.

68

In addition, very few links have a multitude of the key variables in them. While the n41e multi-
links reference multiple key variables within them, the n42e multi-links only use one to two key
variables directly and reference one to three more. Finally, the relative density of equations in
the links is significantly less compared to n41e. Therefore, it takes longer (with numerous free
equations) to bring all the key variables into the agreeing order. The execution times in Table
6.8 and Table 6.10 showcase this difference.

The n42e ordering of multi-links begins by focusing on the first quad of equations. This is
because like the n41e case, the singles for future quads depend on the first ones. In order to
minimize degrees of freedom, the order begins with a link that has a single from the first quad.
In Table 6.9, options are Link #1, #5, #9 or #15. This research analyzed different combinations
of starting links for the different singles. The chosen starting link is the one that minimizes
the number of free equations while maximizing the number of key equations. This ordering
continues until all the links with one free equation are used. Then, a link with four free equations
is brought into the agreeing order. This link is chosen in order to get all of the first quad
equations into the agreed set. Other options for the next link (with fewer free equations) are
also attempted. However, in the end, they do not save time, as the number of free equations
eventually grows to match the four brought in.

Then, links with one free equation are added to the order. However, this is still not enough to
bring the second quad in the agreed set or to reach a check-for-consistency at the current number
of degrees of freedom. Therefore, a link with two free equations is added in order to bring in the
second quad. Then, a link with two free equations is added to bring in the last key equations.
Once all the key equations and first two quads are in the agreeing order, the remainder of the
links are added to the order in a way that did not increase the number of consistent RHS sets.
Once again, the number of key variables (r · c) is equal to the number of degrees of freedom in
the multi-agreeing order.

With this ordering concept, the multi-agree function is triggered eight times in the program.
Of the eight, only the last two multi-agrees end up deleting RHSs. Therefore, I suppress the
program from executing the first six. That leaves two to execute. The first one deletes an average
of 36% of the RHS from the equations. This deletion percentage ranges from 24-50% across
these variants. The second multi-agree removes the remainder of the non-solutions. Table 6.10
shows the results. Just like the n24e AES variants, the cases when e= 8 are not able to complete
in a reasonable amount of time. See Section 6.2 for completion time estimates.

69

nrce # soln’s time nrce # soln’s time nrce # soln’s time
3422 4 0.032s 3424 1 49m 54s 3428 ? ?
4422 2 0.091s 4424 1 1h 26m 17s 4428 ? ?
5422 16 0.397s 5424 3 2h 32m 6s 5428 ? ?
6422 2 0.219s 6424 3 3h 45m 53s 6428 ? ?
7422 1 0.310s 7424 1 5h 11m 48s 7428 ? ?
A422 4 0.583s A424 3 10h 7m 45s A428 ? ?

? No solution found within 300 hours of computation time.

Table 6.10: n42e AES results.

n22e

Using the visualization from the two mappings and an understanding of the AES structure, a
multi-agreeing ordering is determined for n22e. Unlike the previously discussed AES rect-
angles, this is the first square shape. The idea is to use the insights and orderings from the
rectangular shaped AES versions to help create an efficient ordering for n22e. See Table 6.11
for the mapping of links to equations in the 3224 case.

equations
links 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 x x x x
1 x x x
2 x x x x x
3 x x
4 x x x x
5 x x x
6 x x x x
7 x x
8 x x x x x
9 x x x x

10 x x x x x x
11 x x x x x
12 x x x x x
13 x x x x x
14 x x x x x
15 x x x
16 x x x x x x
17 x x x

Table 6.11: 3224 links - equations mapping.

70

As is predicted from the other shapes, the state equations are in pairs in the various multi-links.
For instance, the first pair of sequential state array equations in 3224 are Equations #6 and #7.
Additionally, it is observed that the multi-links with the earlier sequential pairs have both key
equations and later state equations in them. As seen in Table 6.11, Link #2 and #8 include the
first pair. Both of these multi-links also include key equations and state equations from later
rounds of the AES algorithm. Therefore, introducing key equations and the first pair of state
equations efficiently within the multi-agreeing order is the goal. Like other nrce cases, the n= 2
case is not helpful in deducing an ordering for increasing n sizes.

Based on this research, the best starting link for this shape is one with three key equations
and one state equation from the second pair. The next multi-link in the agreeing order is one
with an additional key equation and one state equation from the first pair. This gave a total
of four degrees of freedom for the ordering. These two multi-links introduce the four most
prolific key equations into the agreed set which make subsequent decisions easier. Prolific for
the n22e shape means that these four key equations are more than twice as common as the
other key equations in the links. Based on relationships, the remainder of the linking order does
not increase the number of consistent RHS sets. Basically, the remainder of the multi-links
are added to the agreeing order in such a way that the state equation pairs are brought in as
fast as possible in order to get to the later state equations and multi-links where the checks for
consistency occurr. Table 6.12 gives the agreeing order for 3224 based on the above description.
The first column gives the link number as defined from the default set of links. The second
column lists the new equations that are brought into the agreed set from the link. The third
column displays the number of degrees of freedom once the multi-link is added to the multi-
agreeing order. The final column explains when the pairs of sequential state equations are in the
agreed set and when a check-for-consistency link occurs.

With this ordering concept, the multi-agree function is triggered four times in the program. Of
the four, only the last two multi-agrees delete RHSs. Therefore, I suppress the program from
executing the first two. That leaves two to execute. The first one deletes approximately 37% of
the RHS and then the second one removes the remainder of the non-solutions. Table 6.13 shows
the results.

71

link number new eqns to agreed set # degrees of freedom comment
Link #0 0,1,2,9 3
Link #9 3,6 4
Link #3 7 4 1st equation pair in
Link #7 8 4 2nd equation pair in
Link #2 10 4
Link #4 11 4 3rd equation pair in
Link #5 4 4

Link #10 14 4
Link #11 – 3 check-for-consistency
Link #1 5 3

Link #16 17 3
Link #17 – 2 check-for-consistency
Link #6 12 2
Link #8 13 2 4th equation pair in

Link #12 15 2
Link #13 – 1 check-for-consistency
Link #14 16 1
Link #15 – 0 solved with this check

Table 6.12: Agreeing order for 3224.

nrce # soln’s time nrce # soln’s time nrce # soln’s time
3222 2 0.000s 3224 2 0.030s 3228 1 28m 48s
4222 2 0.001s 4224 2 0.054s 4228 1 55m 56s
5222 4 0.003s 5224 1 0.085s 5228 1 1h 28m 59s
6222 2 0.001s 6224 3 0.087s 6228 2 2h 4m 50s
A222 2 0.004s A224 2 0.291s A228 2 5h 17m 38s

Table 6.13: n22e AES results.

n44e

Using all of the experimental data from this research and the heuristics developed, a multi-link
ordering is determined for n44e. The mapping of the links to equations for 3444 starts on page
74 due to its size. As is predicted from the previous results, the state equations exist in sequential
quad groups within the multi-links. For example, Equations #12, #13, #14, and #15 are the first
quad in the 3224; Equations #16, #17, #18, and #19 are the second quad; and so forth. The
multi-links with these quad equations also include one to two later quad singles and a multitude
of key equations within them. For example, see Link #10, #16, #21, #22 which include the first
quad of equations. These relationships cascade through the multi-links. Therefore, once again,
the earliest quads of equations must be included in the agreeing order prior to the later ones in

72

order to minimize the degrees of freedom. This is clearly shown in the mapping of 3444 as the
four singles from the 5th quad require the 1st, 2nd, 3rd, and 4th quad to already be in the order.
This is the same requirement for the 6th, 7th and 8th quads—that the first four quads have to
already be in the order to minimize the order’s degrees of freedom.

Therefore, the singles from the early quads need to join the agreeing order early. This implies
that certain key equations need to be present in the order first. This research focuses on creating
an efficient order that would bring these key equations in first while minimizing the degrees of
freedom. Based on these requirements, an agreeing order is found that (at its peak) has sixteen
degrees of freedom. It is not possible to reduce this number based on the sparse nature of the
MRHS equations for AES using the default set of links. Sixteen is the r · c value for this AES
shape.

With this ordering concept, the multi-agree function is triggered sixteen times in the program.
Of the sixteen, only the last two multi-agrees delete RHSs. Therefore, I suppress the program
from executing the first fourteen. That leaves two to execute. Table 6.14 shows the results for
the 4-element field. The larger fields take computing time than is feasible on a single processor.
The only exception to this is the 2444 case which is always an abnormality. Additionally, the
agreeing order for A44e is located in Appendix B.

nrce # soln’s time nrce # soln’s time nrce # soln’s time
2442 1 0.228s 2444 4 21h 37m 2s 2448 ? ?
3442 2 54m 4s 3444 ? ? 3448 ? ?
4442 1 2h 53m 20s 4444 ? ? 4448 ? ?
5442 1 3h 11m 47s 5444 ? ? 5448 ? ?
A442 2 17h 28m 48s A444 ? ? A448 ? ?

? No solution found within 300 hours of computation time.

Table 6.14: n44e AES times.

73

equations
links 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 x x x x x x
1 x x x x
2 x x
3 x x x x
4 x x x x x x x x x
5 x x
6 x x x x x x
7 x x x x x x
8 x x
9 x x x x x

10 x x x x x x
11 x x
12 x x x x x x
13 x x x
14 x x
15 x x
16 x x x x x x x
17 x x x x x
18 x x x x x x x x
19 x x x x
20 x x
21 x x x x x
22 x x x x x x x x
23 x x x x x x
24 x x x x x x x

Table 6.15: 3444 links - equations mapping (Part I).

74

equations
links 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 ...

0 x
1
2 x x x x
3
4 x
5
6 x
7
8 x x x x
9 x

10 x
11
12 x
13 x
14 x x x x
15
16 x
17 x
18 x
19
20 x x x x
21 x
22 x
23
24 x

Table 6.16: 3444 links - equations mapping (Part II).

75

equations
links 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 x x x x x x
26 x x x x x x
27 x x
28 x x x
29 x x x x
30 x x
31 x x x x
32 x x
33 x x x x
34 x
35 x x x x
36 x x
37 x x x x x x
38 x x
39 x x x x
40 x
41 x x x x
42 x x x
43 x x x x x x
44 x x
45 x x x x x x
46 x
47 x x x x
48 x x x

Table 6.17: 3444 links - equations mapping (Part III).

76

equations
links 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
25 x
26 x
27
28 x x x x x
29 x
30 x x x x x
31 x
32 x x x x x
33 x
34 x x x x x
35 x
36 x x x x x
37 x
38 x x x x
39
40 x x x x
41
42 x x x x
43
44 x x x x
45
46 x x x x
47
48 x x x x

Table 6.18: 3444 links - equations mapping (Part IV).

77

equations
links 49 50 51 52 53 54 55 56 57 58 59
25
26
27
28
29
30
31
32
33
34
35
36
37
38 x
39 x
40 x
41 x
42 x
43 x
44 x
45 x
46 x
47 x
48 x

Table 6.19: 3444 links - equations mapping (Part V).

78

equations
links 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
49 x x x x
50 x x
51 x x x x x x
52 x
53 x x x x x x x
54 x x x
55 x x x
56 x x
57 x x x
58 x x
59 x x x x x x x

Table 6.20: 3444 links - equations mapping (Part VI).

equations
links 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49
50 x x x x
51
52 x x x x
53
54 x x x x
55
56 x x x x
57
58 x x x x
59

Table 6.21: 3444 links - equations mapping (Part VII).

79

equations
links 49 50 51 52 53 54 55 56 57 58 59
49 x
50 x
51 x
52 x
53 x
54 x
55 x
56 x
57 x
58 x
59 x

Table 6.22: 3444 links - equations mapping (Part VIII).

80

6.2 Modeling Large Variants of AES

As can be seen in the previous section of results, the time to solve the various small scale
variants increases as the parameters are increased. While Table 6.4 shows the ease of solving
n148 versions on a single processor, Table 6.14 shows that n448 cases are not as quickly solved.
In fact, it would probably take longer than the remaining life of the universe to solve A448 on
a single processor. However, recall that the biclique method of Bogdanov et al. also takes an
infeasible amount of time to execute. Therefore, in order to compare our method with others,
we create a model to estimate the completion time for the larger variants.

The various tables in this chapter display the total amount of time that the program requires to
compute the answer. This includes the initial processing. However, while these milliseconds of
initial processing might have a measurable affect on the small nrce cases, they are negligible on
cases that take hours and/or days to run. In fact, the main consumer of time in the program is the
first multi-agree that deletes RHSs. Table 6.23 shows the time results for both multi-agrees that
delete RHSs for a sampling of the cases in this research. The second column shows the time for
the first multi-agree to execute and the third column shows the time for the second multi-agree
to execute (and solve the system). Based on this information, the model attempts to predict the
amount of the time required to execute the first multi-agree (as representative of the entire time
necessary to solve the system). This is due to the fact that if the first multi-agree is doable, then
the second one will also be as it is always significantly faster.

This model for time prediction of the multi-agrees is not a complex model looking for a high de-
gree of accuracy (i.e., to the second). Instead, it focuses on determining how close our method
is to breaking AES given current parallel processing resources. This allows a comparison to
other algebraic techniques and their results. The model is based on how the program executes
multi-agrees. See Appendix A (page 117) for the pseudo-code of the multi-agreeing algorithm.
Appendix C (page 151) contains the code of the entire program written in C. Basically, the
multi-agree algorithm has three nested loops. The outermost loop figures out the next combina-
tion of RHSs to check, the middle loop runs the possible combination through the links in the
agreeing order, and the inner loop adds the z values for the combination in the link to determine
if it is a valid combination. This yields the model in Equation 6.1:

(combos)tcombo +(links)tlink +(eqn)tz = total time. (6.1)

81

nrce first multi-agree second multi-agree
3148 1225.75s 28.24s
A418 13585.59s 38.14s

4244 5228.54s 25.01s
7244 13169.94s 10.37s
A244 25898.85s 0.91s
5418 4040.02s 263.25s
A418 15535.45s 655.89s

3424 2992.95s 0.93s
6424 13548.66s 4.51s
A424 36464.41s 0.29s
4228 3331.1s 25.36s
6228 7452.13s 37.84s
A228 19034.63s 23.64s

Table 6.23: Sample of multi-agree times.

The model term combos refers to the number of combinations of RHS sets that exist at the
start of the multi-agree. Recall this number comes from Equation 5.7. The model term links

refers to the total number of times that the program will cycle through the link loop during the
execution of the multi-agree. The model term eqn refers to the number of equations in the link
whose values must be added to check if they equal zero (which indicates that the combination
of RHSs is valid). The parameter tcombo represents the amount of time it takes a combination to
be checked. The parameter tlink represents the amount of time it takes a link to be found. The
parameter tz represents the amount of time it takes to add a z-value.

Given the speed of current computing resources, tz is too small to be accurately measured and
is, therefore negligible. Therefore, the model was simplified to Equation 6.2.

(combos)tcombo +(links)tlink = total time (6.2)

Equation 6.2 only has two unknowns, yet there exists considerable experimental data to fit to
this equation. Therefore, the resulting over-determined system has a relatively small degree of
inconsistency between the equations representing each of the AES variants in this research. This
is a non-negative least squares problem to solve in which we minimize the norm of (Ax− b)

subject to x≥ 0. The non-negative feature is important as time cannot be negative with respect

82

to this problem. Creation of a time machine is not within the scope of this research so only
positive time values will be used.

Table 6.24 shows the results of using non-negative least squares techniques in MATLAB to
solve for the unknown time values. The model is run using only shape specific data to determine
if there was any significant differences based on shape.

Two interesting observations occur. The first observation is that the time values are all in the
same order of magnitude. It did not matter that the n14e and n41e cases had 164 combinations
and the other cases had 168 combinations. This lends credence to the validity of the time
calculations. Therefore, the last line of Table 6.24 uses all of the experimental data and displays
the result. The second observation is that tcombo is consistently zero. This indicates that the
value of tcombo is negligible in finding the total time. In fact, when this model is run without the
caveat of allowing only non-negative answers, the value of tcombo is always negative.

nrce tcombo tlink
n14e 0 0.000000066532850688
n24e 0 0.000000086488742175
n41e 0 0.000000046250623998
n42e 0 0.000000107006696657
n22e 0 0.000000078661122082
n44e 0 0.000000104071886952

all 0 0.000000099138732423

Table 6.24: Values for AES time unknowns.

The last row of Table 6.24 shows the time values calculated when using all the experimental
data in the previous rows. It shows that the time values are fairly consistent over the different
sizes and shapes of AES variants. Therefore, the values located in the last row are used in the
model calculations.

Recall that the purpose of this model is to predict larger cases of AES that cannot be currently
computed. The agreeing order for a specific nrce case provides the value of combos because
this value does not change as field size increases. However, the value of links does change as
the field size increases. Therefore, a second model needs to be developed to predict the number
of links that a specific case of AES will check.

Links are the total number of iterations of the link loop within the multi-agree algorithm. This

83

loop checks whether a RHS combination satisfies a link. Each possible combination of RHSs
will check between 1 and p links (where p is the number of links being multi-agreed). There-
fore, there is an upper and lower bound for the value of links as described in Equation 6.3.

(# of combinations)≤ (# of links checked)≤ p∗ (# of combinations) (6.3)

A tighter upper bound is found by examining how the multi-agree algorithm operates. Start
with the first combination of RHSs. The algorithm checks all the links in the agreeing order
until it reaches a check-for-consistency link. It checks a link by determining whatever the value
of each equation’s RHS (that is in the link) sums to zero. Because each of these links add at
least one new equation to the agreed set, it is trivial to find the RHS for the new equation that
keeps the link summed to zero. This changes when the multi-agreeing algorithm encounters a
check-for-consistency. Here there are no new equations added to the agreed set, instead there
is additional relationship information about the equations already in the set. Therefore, once
the algorithm checks the current combination of RHSs against the check-for-consistency link,
there is a probability that the RHS set is still valid and the algorithm will continue to the next
link. There is also a probability that the set will fail and the algorithm will dump that RHS set
and move to the next RHS set to check. The probability that a RHS set will continue through
a check-for-consistency is 1/F , where F is the field size. At each check-for-consistency link,
the algorithm is adding all the z values of the RHSs. This summation must equal 0 for the RHS
combination to be consistent with the multi-link. Zero is just one value within the field. Since
we check each possible combination, it is a good approximation to assume uniform randomness
across our sets and that the probability of a set’s z sum equaling zero is 1/F . Therefore, we
create a probability tree based on the link ordering to determine how many link checks should
occur for any given combination.

Example
This example of the creation of an upper bound for the number of links checked uses the AES
case of 3224 and the agreeing order listed in Table 6.12.
The first multi-agree that deletes RHSs occurs with link #13. Figure 6.1 gives a visual represen-
tation of the probability tree associated with this case. The first check-for-consistency occurs at
link #11 which is the 9th link in the order. Therefore, every RHS combination will check at least
nine links. There is a 15/16 chance that the set will fail and a 1/16 chance that the multi-agree
algorithm will continue. If the algorithm continues, it checks three more links which includes

84

link #17 which is the next check-for-consistency. There is a 15/16 chance that the set will
fail after checking twelve links in total. There is a 1/16 chance that the set will be valid and
the multi-agree algorithm will continue. In this case, it checks four more links to execute the
next check-for-consistency. This is the last link (link #13) for this multi-agree. Regardless of
whether the set is valid or not—it will check this last link if the set has lasted this far. This
yields a total of 9(15

16)+ 12(15
16)(

1
16)+ 16(1

16)(
1

16)(1) = 9.203125. This number represents the
average number of links that will be checked for a RHS combination.

Figure 6.1: Probability tree for 3224.

Multiplying the result of the probability tree by the total number of RHS combinations (in the
above example that would be 65,536) should yield the total number of links checked. However,
the result from this computation is always larger than the actual number of links checked. This
is because the multi-agree algorithm does not always return to the first link in the agreeing order
for each new RHS set that is checked. Efficiencies built into the program allow the program
to back-track to the first link in which an equation RHS was changed instead of automatically
going back to the beginning. Therefore, our model always yields an upper bound to the actual
number of links checked.

When executing our model of link counts for the nrce variants of AES, it was fairly accurate.
Table 6.25 shows the factor that our model is of the actual number of links checked. For ex-

85

nrce factor nrce factor nrce factor
3412 1.167 3414 1.193 3418 1.200
4412 1.112 4414 1.127 4418 1.130
5412 1.084 5414 1.094 5418 1.097
A412 1.037 A414 1.041 A418 1.042
3142 1.000 3144 1.000 3148 1.000
4142 1.054 4144 1.071 4148 1.077
A142 1.017 A144 1.022 A148 1.023
3222 1.081 3224 1.114 3228 1.124
4222 1.049 4224 1.066 4228 1.071
5222 1.035 5224 1.046 5228 1.050
6222 1.028 6224 1.036 6228 1.038
A222 1.014 A224 1.018 A228 1.020
3422 2.067 3424 2.262
4422 1.809 4424 1.921
5422 1.576 5424 1.673
6422 1.492 6424 1.551
7422 1.390 7424 1.466
A422 1.332 A424 1.369
3242 3.315 3244 4.241
4242 2.023 4244 2.270
5242 1.798 5244 1.995
6242 1.289 6244 1.323
7242 1.420 7244 1.482
A242 1.193 A244 1.208
3442 2.238
4442 1.438
5442 1.301
A442 1.203

Table 6.25: Factors for link model (organized by shape).

ample, the case of 3224. The algorithm actually checks 541,574 links when it executes the first
multi-agree that deletes RHSs. Based on our model of links, our model estimates 603,136 links
are checked. The factor of 1.114 indicates that our model predicts a number approximately 11%
higher that the actual result.

Table 6.25 provides the calculated factors for each case in this research. The results are grouped
by shape within each square of the table. Table 6.25 shows that, within a shape, our estimation
for the number of links increases its accuracy as the number of rounds increases. It also looks
like the accuracy decreases slightly as the field size increases. It clearly shows that our model’s

86

estimation of links checked is fairly close to the actual count. The only significant anomaly is
seen in the 324e cases where our estimation is three times as large as the actual count. This is
because the efficient agreeing order for the other n values in n24e start with a link that has equa-
tions from two different intermediate state arrays. The case of n = 3 does not have more than
one intermediate state array. Therefore, the agreeing order is slightly different which affects our
estimation of links. Unfortunately, the agreeing order for 324e does not scale up to larger n.

It is also interesting to note that the relative change in factor size from GF(24) to GF(28) is
always less than half of the relative change in factor size from GF(22) to GF(24). In fact, the
change from GF(24) to GF(28) is between 19% and 50% of the change from GF(22) to GF(24).
The only case that this is not true for is the 314e case where it accurately estimates (to three
significant digits) the number of links checked. Therefore, an upper bound exists that the jump
in relative change in factor size from GF(24) to GF(28) is 50%. Using that figure, factors are
estimated for n428 and n248 cases. The results are shown in Table 6.26.

nrce factor
3428 2.369
4428 1.980
5428 1.724
6428 1.582
7428 1.506
A428 1.388
3248 4.833
4248 2.409
5248 2.104
6248 1.340
7248 1.514
A248 1.216

Table 6.26: Estimated factors for n248 and n428 AES variants.

This clearly shows that our estimate for the number of link loops executed gets closer to the
correct number as the size of the MRHS system grows. Therefore, a factor of 1.00 (namely,
using our estimated number of link loops as the value for links) is an absolute upper bound for
our time calculations. This is the factor that is used in the estimation of times. The results are
shown in Table 6.27. Then, using the time estimates from Table 6.24 and the model in Equation
6.2, an upper bound is calculated on the time needed to solve these cases.

Estimating factors for cases of n44e is slightly more difficult as experimental data is only avail-

87

nrce factor estimated time
3428 1.00 1,333,321 years
4428 1.00 1,796,702 years
5428 1.00 2,260,761 years
6428 1.00 3,071,849 years
7428 1.00 3,709,305 years
A428 1.00 5,737,807 years
3248 1.00 1,043,794 years
4248 1.00 1,912,602 years
5248 1.00 2,028,506 years
6248 1.00 2,318,487 years
7248 1.00 3,303,421 years
A248 1.00 4,636,517 years

Table 6.27: Estimated solution times for n248 and n428 AES variants.

able for the 4-element field. Examining the data collected from each of the AES variants shows
that the largest relative increase in factor for any variant (excluding the anomaly of 324e) was
a 12.2% increase. Therefore, we can assume that this percent does not increase and use it to
estimate the factors for n444 cases. The same methodology for computing the factors in Table
6.26 is used to compute the factors for n448. These results are shown in Table 6.28.

nrce factor
3444 2.511
4444 1.613
5444 1.460
A444 1.350
3448 2.664
4448 1.712
5448 1.549
A448 1.432

Table 6.28: Estimated factors for n444 and n448 AES variants.

However, ultimately a factor of 1.00 is used to calculate the number of link loops to be executed
in the algorithm. This ensures that the resulting time estimate is an upper bound to what is
required. The results are shown in Table 6.29.

See Section 8.2 for a discussion on how extensions to this research may suitably reduce these
times.

88

nrce factor estimated time
3444 1.00 1,626,727 years
4444 1.00 3,075,269 years
5444 1.00 3,253,213 years
A444 1.00 9,048,501 years
3448 1.00 2.994 ·1025 years
4448 1.00 5.666 ·1025 years
5448 1.00 5.987 ·1025 years
A448 1.00 1.668 ·1026 years

Table 6.29: Upper bounds for solution times for n444 and n448 AES variants.

6.3 Other AES Results
These extensions of the original MRHS concept are not the only ideas being applied to AES.
A few other researchers have published their timing results on small scale AES variants. Many
of these researchers demonstrate the viability of their method on smaller variants than the ones
used in this research. This helps to show that our method is very competitive.

Thorsten Schilling
Thorsten Schilling [29] extends the ideas of Raddum and Semaev with the concept of learning.
Learning is a guess and check algorithm. It is designed to verify the correctness of a variable
guess quickly and then easily backtrack through the symbols as necessary. During the search for
the solution, the learning algorithm obtains new information from the wrong guesses (namely,
‘why’ the guess was wrong and which symbols caused it to fail) and applies that knowledge
when determining the next guess to make. Thorsten compares his results to the MiniSat tech-
nique.

Kenneth Matheis
In [30], Kenneth Matheis proposes a hardware design for implementing MRHS that has sig-
nificant performance gains compared to implementing Raddum and Semaev’s original work in
software. The total chip area of the design is 2.25 m2 and it has a storage capacity of 4.792 TB.
For the small scale AES variant of 3448, Matheis estimates that it would take 5.726 ·1023 years
years to solve while guessing 108 bits out of the 128 key bits. This is faster than our methods
on a single processor. However, if we “guessed” 108 bits of the key, that would eliminate most
of the RHS’s and our algorithm would become orders of magnitude faster.

Sean Simmons

89

Sean applies the F4 algorithm to small scale variants of AES in his paper [31]. His focus was
the AES small scale variant of 2224. In the 2224 case, he uses 8 plaintext/ciphertext pairs to
determine the solution in 106 - 329 seconds on a 2.4 GHz processor. While we ignore the n = 2
cases, our 3224 case uses 1 plaintext/ciphertext pair and finds the solution in 0.030 seconds
using a slower processor. He was able to reduce his computational time on 2224 by using 16
plaintext/ciphertext pairs. However, the time merely reduces to a time of 34 - 38 seconds. It is
clear that our method is more efficient in determining the solution.

Elizabeth Kleiman
Her PhD dissertation [32] examines Baby Rijndael (n224) and parallel processing possibilities
to solve it. Her results indicate that XL and XSL can’t handle the size of the equations for 4224.
Our methods found the solution to 4224 in 0.054 seconds. Additionally, she hypothesized that
XSL on 4224 would work with two plaintext/ciphertext pairs but she ran out of computing
power when conducting her research.

Stanislav Bulygin and Michael Brickenstein
In 2008, these gentlemen wrote [33] about constructing a zero-dimensional Gröbner represen-
tation for AES in GF(2). They use the PolyBoRi [34] algorithm on an AMD 2.2 GHz processor
to solve A224 in 1205 seconds. Our A224 case took 0.291 seconds to solve. They also used
PolyBoRi to conduct a meet-in-the-middle attack on AES variants using numerous pairs of
plaintext/ciphertext. These meet-in-the-middle attacks were conducted on n = 2 variants of
AES. As we did not analyze these variants in this research because they were non-conducive to
scaling, a direct comparison cannot be made at this time. Finally, they explore how guessing
bits of the key can help obtain the solution to the system quicker. For the case of 3244—they
used 256 pairs of plaintext/ciphertext and guessed seven bits (approximately 21% of the key).
They were able to solve this in 657 seconds. Our method (with 1 plaintext/ciphertext pair and
no guessing) took 800 seconds.

6.4 Multiple Plaintext/Ciphertext Pairs
The results discussed in this chapter are based on using one plaintext/ciphertext pair of data to
create the equations. Many current cryptanalysis methods require multiple pairs of plaintext/-
ciphertext to operate. For example, the "Lucky 13" attack [35] is able to recover the plaintext
of website authentication cookies with only 213 plaintext/ciphertext pairs of data. Another ex-
ample is the latest attack on RC4 that requires one billion (230) plaintext/ciphertext pairs to find
the key. While seeming like a large number, it takes only 32 hours to currently execute [36].

90

The use of multiple plaintext/ciphertext pairs is a common input to breaking cryptosystems
because this additional data tends to simplify the problem. In general, the more information
one has about a problem—the easier it is to solve. Therefore, part of this research focuses on
multi-agreeing orders that use information from multiple plaintext/ciphertext pairs created from
the same key.

MRHS equations that are generated from multiple plaintext/ciphertext pairs (that are encrypted
with the same key) are slightly different than the equations generated from only one plaintext/ci-
phertext pair. Namely, there are more variables, which results in more equations, and therefore,
more links are created. However, since the key is the same—the key schedule equations and
key variables are the same. Assume you are using m plaintext/ciphertext pairs. Now, instead
of nr + nrc = nr(c+ 1) equations there are nr +m(nrc) = nr(mc+ 1) equations. Originally,
there were rc+ nr +(n− 1)rc variables. Now, there are rc+ nr +m(n− 1)rc variables. Let
k = nr(mc+1) which represents the number of equations. Let j represent the number of vari-
ables. Therefore, j = rc+ nr + (n− 1)rc = nr(mc+ 1) + rc(1−m) = k + rc(1−m). Since
m≥ 2, j < k.

Recall the example of 3224 in Table 6.12 and Figure 6.1. This variant has eighteen equations.
The agreeing order has the 16th link delete RHSs and has a maximum of four degrees of freedom
during the process. Let m = 3. Now there are 42 equations. For multiple plaintext/ciphertext
to be helpful in solving the system, it needs to delete RHSs quicker than the single case. Based
on Equation 6.2, there are two options to reduce the total time. The first is to create an ordering
which has a multi-agree that deletes RHS earlier than the 16th link (which translates to using, at
most, (15/42) of total information about the system instead of using (16/18) of the information
on the system). The second is to reduce the number of free equations within the order to
shrink the number of consistent RHS sets. Therefore, viable strategies must create one of these
opportunities. Three multi-agreeing concepts are explored in this research.

Strategy #1.
First, I attempt to map the agreeing order (for a specific nrce variant of AES) from one plaintex-
t/ciphertext pair to m plaintext/ciphertexts. For instance, assume Link #5 relates a key variable
to the first state array (in the first pair) and Link #29 relates the same key variable to the first
state array (in the second pair). These parallels in link structure exist in the default set of links
due to their systematic method of construction. Therefore, perhaps agreeing Link #29 after Link
#5 in the agreeing order would be helpful as it would provide additional information about the

91

key variable in question.

Example.
Consider the case of 3224 using two plaintext/ciphertext pairs. Variables #0 to #9 are key
variables, Variables #10 to #17 are intermediate state array variables from the first plaintext/ci-
phertext pair, and Variables #18 to #25 are intermediate state array variables from the second
plaintext/ciphertext pair. Creating the default set of links yields Links #13 and #21 that exclu-
sively deal with the key schedule equations (which are the same for both pairs). Table 6.30
gives the mapping of the remainder of the links between the two plaintext/ciphertext pairs. By
‘mapping’, we mean that the links relate the same relative variables and equations together for
each plaintext/ciphertext pair.

1st pt/ct 2nd pt/ct
Link #0 Link #24
Link #1 Link #10
Link #2 Link #26
Link #3 Link #27
Link #4 Link #28
Link #5 Link #29
Link #6 Link #30
Link #7 Link #31
Link #8 Link #32
Link #9 Link #33

Link #11 Link #16
Link #15 Link #18
Link #17 Link #12
Link #19 Link #20
Link #23 Link #22
Link #25 Link #14

Table 6.30: Mapping of multiple pt/ct links.

Then the original single agree order (see Table 6.12) is applied to the problem. First, this order
is applied to just the information from the first plaintext/ciphertext pair in this example. The
first multi-agree that deletes RHSs occurs on the 16th link with four degrees of freedom and
took 0.085 seconds to execute. Second, this order is applied to just the information from the
second plaintext/ciphertext in this example. The first multi-agree that deletes RHSs occurs on
the 16th link with four degrees of freedom and took 0.086 seconds to execute. Third, this order
is applied to using both orders, one right after another. Due to the fact that there are more links

92

link number new eqns to agreed set # degrees of freedom comment
Link #11 0, 1, 2, 9 3
Link #16 21 3
Link #1 3, 6 4

Link #10 18 4
Link #17 7 4
Link #12 19 4
Link #25 8 4
Link #14 20 4
Link #15 10 4
Link #18 22 4
Link #19 11 4
Link #20 23 4
Link #21 4 4 key equations only
Link #2 14 4
Link #3 – 3 check-for-consistency

Link #26 26 3
Link #27 – 2 check-for-consistency
Link #13 5 2 key equations only
Link #8 17 2
Link #9 – 1 check-for-consistency

Link #32 29 1
Link #33 – 0 solved

Table 6.31: Agreeing order for two pairs of 3224.

than variables—not all of the links are needed in the multi-agreeing order in order to solve the
system. However, RHSs are not deleted in this order until the 22nd link. Table 6.31 shows this
multi-agreeing order utilizing two plaintext/ciphertext pairs.

However, this method fails to improve the use of a single plaintext/ciphertext pair. Recall that
the resulting time from Equation 6.2 is decreased by either shrinking the number of RHS com-
binations (by decreasing the total degrees of freedom within the order) or by forcing the first
multi-agree to occur earlier in the order. This method maintains the same number of degrees
of freedom as the single plaintext/ciphertext order because it is based on the same idea. It also
fails to force a check-for-consistency earlier in the order. This is because the multi-agrees that
delete RHS sets are happening at the same relative place in the order. Yet, using the links from
both plaintext/ciphertext pairs causes the multi-agrees to be triggered after more links are in
the agreeing order (in this example they occurred after the 22nd link instead of the 16th link).
This also increases the number of equations in the system that must be checked in the links.

93

Specifically, the the order in Table 6.31 took 0.130 seconds to execute.

Clearly, applying this strategy to multiple plaintext/ciphtertext pairs takes longer than just using
one plaintext/ciphertext pair. In addition, it is found in most experimental cases, that even if the
first multi-agree in the order deletes RHSs (which it did not), it still takes longer using multiple
plaintext/ciphertext pairs than just using one to find a solution to the system. Ultimately, the
problem is that additional plaintext/ciphertext pairs are just complicating the situation.

Strategy #2.
With Strategy #1 not displaying promising results, I discarded the original multi-agreeing or-
ders and attempted to find an unique ordering for cases of multiple plaintext/ciphertext pairs.
Unfortunately, nothing was consistently found that would cause multi-agrees to trigger earlier
and/or with a smaller sets of RHSs. Similar to the single plaintext/ciphertext case, some ef-
ficient orders are found for the abnormal cases (i.e., n = 2 and e = 2), but nothing is able to
extend to other sizes. For example, an agreeing order is found for the 3224 example used in
Strategy #1. It allows no excessive links to be included into the order and focuses on the early
equations. It took 0.035 seconds to execute. The resulting agreeing order is displayed in Table
6.32.

However, this example is an abnormality, as it could not be scaled to larger values of n. Perhaps
the method of MRHS using an independent set of links is just not conducive to utilizing more
than one plaintext/ciphertext pair.

Strategy #3.
The last concept explored in this research was the use of dependent links to assist the multi-
agreeing order. Dependent links do not increase the amount of information about the system.
Therefore, they cause the number of links before a multi-agree to increase. However, if they
can reduce the number of degrees of freedom in the multi-agreeing order—this is good. The
reduction of the exponential portion of the timing model is more helpful (and could overcome)
an increase in the linear portion.

At this state of the research, the creation of dependent links are extremely time consuming,
since they are crafted by hand. The concept is to take the ‘best’ multi-agreeing order that is
constructed with the default set of multi-links. Then one examines every time an increase in
the degrees of freedom is introduced in the order. The focus is to then create a custom link
(or a series of custom links) that introduces these new equations into the agreed set without

94

link number new eqns to agreed set # degrees of freedom comment
Link #11 0, 1, 2, 9 3
Link #13 5 3
Link #17 7 3
Link #25 8 3
Link #19 11 3
Link #23 3, 12 4
Link #1 6 4

Link #15 10 4
Link #9 17 4
Link #8 – 3 check-for-consistency
Link #0 13 3
Link #5 15 3
Link #4 – 2 check-for-consistency

Link #21 4 2
Link #7 16 2
Link #6 – 1 check-for-consistency
Link #3 14 1
Link #2 – 0 solved

Table 6.32: More efficient agreeing order for 2 pairs of 3224.

increasing the number of consistent RHS sets. In general, this tends to add 2-3 multi-links to
replace the increase in degrees of freedom. This method does not work on every increase in the
number of degrees of freedom nor on every variant. While this research did occasionally find a
series of custom multi-links that could replace increases of degrees of freedom, it was only in
abnormal, small variants.

95

THIS PAGE INTENTIONALLY LEFT BLANK

96

CHAPTER 7:

Other Cryptosystems

Prior to Daemen and Rijmen’s creation of the well-known Rijndael, they created other non-
Fiestel block ciphers. These are Shark (1996) and Square (1997). These iterative ciphers were
created in accordance with the wide-trail design strategy, and inherited useful properties from
their predecessors. Due to their structural similarity to AES, it is possible to create a MRHS
system of equations to describe these ciphers and, therefore, utilize our previously described
techniques on these representations. A description of the ciphers (to include their differences
from AES), insights gained from the technique execution, and the results are located in this
chapter. Additionally, the cipher Anubis is discussed. Rijmen created Anubis, a descendant of
AES, in 2000.

7.1 Square
Square is a 128 bit block cipher revealed to the world in 1997 by Joan Daemen, Lars Knudsen,
and Vincent Rijmen. It is the direct predecessor (parent) of AES. It builds off the successes
of Shark and refines them. Square’s primary design goal is to scale efficiently on a range of
processors and run in parallel within hardware.

Like AES, Square consists of identical rounds of transformations. The initial cipher release
consisted of six rounds, but analysts found a dedicated, chosen-plaintext attack on this size.
The final cipher version was changed to eight rounds. Each round has four transformations that,
like AES, can be implemented as XORs and table lookups [37].

The four Square transformations are linear, non-linear, permutation, and key addition. In AES,
the linear transformation is the Mix Columns step which multiplies the state array by a particular
circulant matrix to mix the columns. In Square’s linear transformation, an upper triangular
matrix multiplies the state array. This multiplication operates on the rows of the state array
instead of the columns (as in AES). According to its designers, the particular upper triangular
matrix was selected to maximize the branch number and facilitate implementation on 8-bit
processors [18, p.166].

The non-linear transformation in Square is a Byte Substitution operation using a specially
crafted S-box. This is the same concept used in AES. In AES, the S-box consists of the in-

97

version operation (on bytes) followed by a specific affine transformation (see page 16). In
Square, the S-box also uses inversion but with a different affine transformation. The Square
affine transformation is over GF(2) and has a complicated description in GF(28). However, a
complicated description in GF(28) does not increase the complexity of the MRHS equations.
The same number of right-hand sides

−→
b exist for MRHS equations in Square as they did in

AES.

In AES, the permutation step is the Shift Rows operation. In Square, the permutation occurs
when the rows of the State Array are transposed with its columns. This involution is nice and
compact for implementation. However, it does create differences between the MRHS represen-
tations of small scale variants of Square versus AES. Shift Rows in AES can be easily imple-
mented on any shape. It is especially useful to analyze n14e AES, which negates Shift Rows
so one can see the interaction of the other transformations. However, in rectangular Square
variants, the concept of interchanging rows and columns becomes tricky. The result is that there
are slight differences in efficient agreeing orders for odd n and even n Square variants.

The final round element of Square is the Key Addition transformation. The add key step is the
exact same for both AES and Square; it is the bitwise addition of the round key.

In both ciphers’ structure, there is a requirement for a different round key for each round of
the algorithm. However, these two algorithms use vastly different implementations. In AES,
the key schedule algorithm is non-linear and uses the same strong S-boxes as the main encryp-
tion algorithm. In Square, the key schedule algorithm is linear and implemented as an affine
transformation. The key schedule seems complicated in its design. It consists of multiple bytes
shifting positions within each row and then either adding a constant or a previous row value to
each byte. The Square key schedule is implemented using an iterative definition. Due to the
linear nature of this component, the final algorithm should be easier to solve because a level
of complexity has been removed from the process. The trade-off is that more variables exist
within Square’s MRHS representation than AES, and these variables are more prevalent in each
equation to handle the key relationships.

7.1.1 Implementation
Due to Square’s many similarities with AES, it is relatively straightforward to create the MRHS
equations that represent Square. See Appendix E for the C code that creates the Square MRHS
equations. Many key insights are gained from looking at smaller versions of AES before ana-

98

lyzing the full version and therefore, Square is tackled similarly. This research analyzes mini-
Square (2x2) and full-Square (4x4) with a varying number of rounds. Even though the name
of the cipher is Square, the cipher’s implementation is modified so that rectangular shapes are
also generated and analyzed. The sample implementation [38] given by the authors and their
published paper [37] assist in our creation of Square’s MRHS representation.

It is a huge jump to move from mini-Square to full-Square in terms of the complexity of de-
signing a multi-agreeing order. Therefore, rectangular shapes of state arrays are examined for
insights. Having a rectangular matrix complicates the implementation of the Transpose trans-
formation. Therefore, the dimensions of the state array are changed multiple times during the
process (i.e., r× c becomes c× r). This results in a process that treats rows and columns in the
same way with regards to the Transpose transformation. Therefore, there are no differences be-
tween cases of n41e and n14e nor between cases of n42e and n24e. It is the number of variables
in Square’s state array that is helpful to look at instead of a specific rectangular shape.

Although the nrce definition is created for AES, I will also use it to describe Square cases as
the reader should be comfortable with the meaning of this notation.

7.1.2 Notation
A typical process of Square looks like

M−1A M ST A M ST A . . . M ST A M ST A,

with letters standing for the following transformations described in this section: M (Multi-
plication by a upper-triangular matrix), S (Byte Substitution with S-box), T (Transpose—the
permutation transformation), and A (Add Round key). Similar to AES, these transformations
are re-grouped without changing the results. This creates the following process:

M−1AM ST AM ST . . . AM ST AM ST A.

The following notation is used to create the equations: n is the number of rounds, P is plaintext,
C is ciphertext, I is the intermediate state array after a round key is added, and X is the state
array at the end of the byte substitution (and transpose) operation. Then the process looks like

99

(with output [states]):

[P]M−1AM [I0]ST [X1] AM [I1]ST [X2] . . . AM [In−2]ST [Xn−1] AM [In−1]ST [Xn] A [C].

This process yields the following algebraic equations:

I0 = P+M(K0) T (Xi) = S(Ii−1) Ii = M(Xi +Ki) C = Xn +Kn . (7.1)

These translate into the following MRHS equations:[
(M(K0)) j,k

X1,k, j

]
=

[
Sin

Sout

]
+

[
Pj,k

0

]
;[

Ii, j,k

Xi+1,k, j

]
=

[
Sin

Sout

]
1≤ i≤ n−2;[

In−1, j,k

Kn,k, j

]
=

[
Sin

Sout

]
+

[
0

Ck, j

]
. (7.2)

The key schedule algorithm is similiar to AES but without the S-box substitution. It is written
in terms of columns:

Ki,0 = F(Ki−1,c−1)+ (if c > 1) Ki−1,0 Ki, j = Ki−1, j +Ki, j−1 i, j > 0,

where row k of the output of the column rotation F is

Fk(Ki, j) = Ki, j,(k+1 mod r)+ (if k = 0) 2i.

This gives no MRHS equations, since the key schedule contains no non-linearity.

The ordering of the variables puts the key variables K0, j,k before those for states Xi. Addition-
ally, the intermediate states Ii and non-initial round keys Ki get replaced by equivalents in terms
of actual variables.

100

7.1.3 Application of Technique

Using a similar process as with AES, efficient agreeing orders are found for n14e, n42e, n22e

and n44e. I use many of the insights gained from analyzing AES. In general, the Square multi-
agreeing orders are easier to find than for AES as there are fewer possibilities that keep the
degrees of freedom minimized. All Square results are computed on a single 2.4 GHz Intel
processor with 4 GB of memory. See Appendix F for the C code that implements our methods
on Square.

n14e

Unlike AES, Square uses only eight rounds of transformations. Therefore, this research ana-
lyzed 214e, 314e, 414e, 514e, and 814e. However, like AES, n = 2 and n = 3 were not helpful
cases to analyze. This is because the patterns for multi-agreeing orders in these cases did not
scale up to the larger round variants as the equations and their links directly map plaintext to ci-
phertext. Agreeing orders (for n = 2 and n = 3) were found that only used three free equations.
Unfortunately, this did not scale up to larger rounds.

The best agreeing order for this size of state array contained four free equations. Dependent
link creation was also attempted to assist with this case. Unfortunately, dependent links did not
help reduce the time required to compute the solution to the system. The final multi-agreeing
order for n14e started with the link containing Equations #0 through #4. Equations #0 through
#3 are the most prolific equations in all the links. Recall that Equations #0 through #3 had the
plaintext incorporated within them. (See Table 7.1 for a visualization of this observation.) In
Table 7.1, Equations #12 through #15 had the ciphertext incorporated within them.

The multi-agreeing order for 4144 begins with Link #7. After this link, the remainder of the
links are placed in the agreeing order in such a way that the remaining equations are agreed
into the set in numerical order. Continuing with the example of the 4144 case, the agreeing
order follows with Link #3 (introducing Equation #5), Link #1 (introducing Equation #6), Link
#5 (introducing Equation #7), Link #0 (introducing Equation #8), Link #2 (introducing Equa-
tion #9), Link #4 (introducing Equation #10), Link #6 (introducing Equation #11), Link #9
(introducing Equation #12), Link #8 (check-for-consistency), Link #11 (introducing Equation
#13), Link #10 (check-for-consistency), Link #13 (introducing Equation #14), Link #12 (check-
for-consistency), Link #15 (introducing Equation #15), and Link #14 (check-for-consistency to
solve).

101

equations
links 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 x x x x
1 x x x x x
2 x x x x x
3 x x x x x
4 x x x x x x
5 x x x x
6 x x x x x
7 x x x x x
8 x x x x x x x
9 x x

10 x x x x x x x x
11 x x x x
12 x x x x x x x x x
13 x x x
14 x x x x x x x
15 x x x

Table 7.1: Square 4144 links - equations mapping.

nrce # soln’s time nrce # soln’s time nrce # soln’s time
4142 4 0.002s 4144 3 0.027s 4148 2 25m 33s
5142 1 0.000s 5144 3 0.042s 5148 3 44m 2s
8142 1 0.002s 8144 1 0.080s 8148 2 1h 25m 57s

Table 7.2: Square n14e MRHS representation stats.

Both n14e and n41e Square cases result in four degrees of freedom in their multi-agreeing order.
Therefore, there are four multi-agrees that occur with check-for-consistency links. However,
only the last two multi-agrees delete RHSs in the case of e = 4 and e = 8. The results of n14e

Square are located in Table 7.2.

n42e

The next size of a Square state array is analyzed in the n42e cases. Similar to the n14e case, the
resulting multi-links are quite dense with equations. Virtually all of the links use an average of
90% of the first eight equations within them. These equations are the ones that have the plaintext
incorporated within them. Additionally, the last sixteen links have the last eight equations in
them. These equations have the ciphertext incorporated in them. These links result in checks
for consistency within our ordering method. The density of equations in these multi-links (in
comparison to AES multi-links) force a large number of degrees of freedom within the multi-

102

equations
links 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 x
1
2 x
3
4 x
5
6 x

16 x x x
17 x
18 x x x
19 x
24 x x x
25 x
26 x x x
27 x

Table 7.3: Portion of the Square 4424 links - equations mapping.

agreeing order. From this perspective, AES was nicer to analyze. This is because there are more
initial possibilities for agreeing orders based on the default set of links. There are only limited
possibilities for the Square cases. Therefore, using custom links and changing the basis might
work well with Square in future research.

Different ordering schemes were attempted on this Square case to reduce the maximum degrees
of freedom. Ultimately, an ordering similar in concept to n14e was used. The link consisting of
Equations #0 through #9 was the starting link. Each subsequent link introduced the remaining
equations in numerical order. However, a slight difference in the location of the checks for
consistency links within the multi-agreeing order occurred depending on whether the case had
an odd or an even number of rounds. Table 7.3 shows a portion of the mapping of equations to
links for 4424. Notice that each of the displayed links has a pair of equations from the second to
last state array within them along with a final state equation. While not captured in this portion
of the table, these links also have multiple earlier equations within them. Assume the agreeing
order has brought Equations #0 through #15 into the set. The order would continue as follows:
Link #0 (introducing Equation #16), Link #2 (introducing Equation #17), Link #17 (introducing
Equation #24), Link #16 (check-for-consistency), then Link #25 (introducing Equation #28),
and Link #24 (check-for-consistency). This pattern then repeats with all the pairs—two state

103

equations
links 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

8 x
9

10 x
11
12 x
13
14 x

24 x x x x x
25 x
26 x x x x x
27 x
28 x x x x x
29 x
32 x x x x x
33 x
36 x x x x x
37 x

Table 7.4: Portion of the Square 5424 links - equations mapping.

equations are introduced, then two sets of checks for consistency are executed. This means that
the first check-for-consistency link for 4224 occurs at the 31st link out of 48 total links.

Table 7.4 shows a portion of the mapping of equations to links for 5424. In this odd-n case, there
are now quads of sequential equations within these links. Therefore, we will have to bring in all
four of these equations separately first before including the check-for-consistency links. This
means that the odd n cases will take longer to multi-agree because check-for-consistency links
happen later within the order. Assume the agreeing order has brought Equations #0 through #23
into the set. The order would continue as follows: Link #8 (introducing Equation #24), Link
#10 (introducing Equation #25), Link #12 (introducing Equation #26), Link #14 (introducing
Equation #27), Link #25 (introducing Equation #32), Link #24 (check-for-consistency), then
Link #29 (introducing Equation #34), Link #28 (check-for-consistency), then Link #33 (intro-
ducing Equation #36), Link #32 (check-for-consistency), then Link #37 (introducing Equation
#38), and Link #36 (check-for-consistency). This pattern then repeats once more with the sec-
ond set of sequential quads. This means that the first check-for-consistency link for 5424 occurs
at 39th link out of 60 links.

104

The results of n42e Square are located in Table 7.5.

nrce # soln’s time nrce # soln’s time nrce # soln’s time
3422 1 0.022s 3424 3 35m 1s 3428 ? ?
4422 1 0.043s 4424 3 1h 5m 50s 4428 ? ?
5422 1 0.092s 5424 3 2h 4m 13s 5428 ? ?
8422 1 0.195s 8424 1 4h 12m 24s 8428 ? ?

? No solution found within 300 hours of computation time.

Table 7.5: Square n42e MRHS representation stats.

n22e

equations
links 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 x x x x x x
1 x x x x
2 x x x x x
3 x x x x x
4 x x x x x x
5 x x x x
6 x x x x x
7 x x x x
8 x x x x
9 x x x x x

10 x x x x
11 x x x x x
12 x x x x
13 x x x x x
14 x x x x
15 x x x x x

Table 7.6: Square 4224 links - equations mapping.

All links in the n22e cases of Square have a multitude of equations within them like previous
Square variants. Therefore, we are faced with using the same initially expensive links to start the
process of multi-agreeing. When working with mini-Square, it was determined that the fastest
ordering had a starting link of five total equations (four degrees of freedom) and then the order
decreased the degrees of freedom with check-for-consistency links. The most efficient starting
link was the one that used the four most prolific equations and the last state array equation.

105

This concept of starting link selection is slightly different than what worked for the rectangular
shaped Square variants. Table 7.6 shows the mapping of links to equations for 4224. The most
efficient starting link was found to be Link #15.

Notice the identical structures of Links #9, #11, #13, and #15. They all use the first four
equations (the ones that incorporate the plaintext) plus one of the last equations (the ones that
incorporate the ciphertext). Testing showed that it was more efficient to first agree these links
in to the order and then use their counterparts (Links #8, #10, #12, and #14, respectively) as the
check-for-consistency. Table 7.7 gives the agreeing order for 4224.

link number new eqns to agreed set # degrees of freedom comment
Link #15 0,1,2,3,15 4
Link #7 4 4
Link #3 5 4
Link #1 6 4
Link #5 7 4
Link #0 8 4
Link #2 9 4
Link #8 12 4
Link #9 – 3 check-for-consistency

Link #12 14 3
Link #13 – 2 check-for-consistency
Link #4 10 2
Link #6 11 2

Link #14 – 1 check-for-consistency
Link #10 13 1
Link #11 – 0 solution

Table 7.7: Agreeing order for Square 4224.

The results of n22e Square are located in Table 7.8.

nrce # soln’s time nrce # soln’s time nrce # soln’s time
3222 4 0.002s 3224 1 0.006s 3228 2 4m 58s
4222 1 0.000s 4224 1 0.021s 4228 1 19m 11s
5222 4 0.001s 5224 2 0.055s 5228 3 59m 50s
8222 1 0.001s 8224 1 0.108s 8228 3 1h 5m 55s

Table 7.8: Square n22e MRHS representation stats.

106

n44e

The Square variants of n44e are very similar in structure to the previously described cases. For
instance, Equations #0 through #15 (the equations with plaintext incorporated into them), are
heavily present in each link. The n44e links use, on average, 8-9 of these equations. Addi-
tionally, for the cases of n = 2 and n = 3, multi-agree orderings were found that used less than
sixteen degrees of freedom. Unfortunately, this was not possible with n≥ 4. Also, as was true
with previous variants, only the last two multi-agrees actually delete RHSs.

The most efficient multi-agree ordering for n44e brought the equations into the agreeing order
in numerical order. Namely, the first link should include Equation #16, the next link should
include Equation #17, and so forth. Once the first four links are in the multi-agreeing order,
this ensures that all the initial Equations are in (i.e., Equations #0 through #15) and the first
quad of sequential state array equations are in. This process continues until the first check-for-
consistency link is available. These check-for-consistency links exist as the last 32 multi-links
when using the default link creation method and also occur in quads. Namely, the ordering
will execute four checks for consistency (using a pair of multi-links), then it will bring in four
additional links, then four checks for consistency, then four additional links, and so forth until
the last multi-link is used.

Experimentation was performed to determine if there were more efficient ways to introduce
the prolific equations into the multi-agreeing order. However, these attempts only served to
increase the degrees of freedom in the method. Therefore, they were discarded. Attempts were
also made to introduce the check-for-consistency links earlier within the multi-agreeing order.
However, these also failed to find a solution faster.

The results of n44e Square are located in Table 7.9.

nrce # soln’s time nrce # soln’s time nrce # soln’s time
2442 1 23.8s 2444 ? ? 2448 ? ?
3442 1 33m 25s 3444 ? ? 3448 ? ?
4442 4 2h 7m 39s 4444 ? ? 4448 ? ?
5442 4 6h 14m 21s 5444 ? ? 5448 ? ?
8442 1 8h 0m 45s 8444 ? ? 8448 ? ?

? No solution found within 300 hours of computation time.

Table 7.9: Square n44e MRHS representation stats.

107

7.1.4 Modeling larger cases
Like AES, many of the larger variants of Square require an infeasible amount of time to run on
a single processor. Using the same model construction methodology as AES (Page 81), a model
is created to estimate the time completion of the larger variants of Square. Equation 6.2 is used
and Table 7.10 displays the MATLAB results of using non-negative least squares techniques on
the Square experimental data. The time values calculated are the same order of magnitude as
was found for AES.

nrce tcombo tlink
n14e 0 0.000000043483344263
n42e 0 0.000000079024947453
n22e 0 0.000000051527389281
n44e 0.000000055166130583 0.000000079100354931

all 0 0.000000076387648850

Table 7.10: Values for Square model unknowns.

The number of iterations of the link loop are also calculated in the same manner as for AES.
Recall Figure 6.1. The results are also strictly upper bounds for the actual number of link loops
executed in the multi-agree program. Table 7.11 displays the factors for the Square variants.
The first observation is that our prediction for the number of iterations of the link loop for
Square is closer to the actual results than AES. There is also the out-lying case of 8222 where
our model predicts a smaller number of link loops than the program is forced to execute during
the multi-agree function.

Using a factor of 1.0 for the link loops and then the time values calculated in Table 7.10, com-
pletion times are estimated for the larger variants of Square. The results are located in Table
7.12.

7.2 Shark
Shark (1996) is a joint creation by Vincent Rijmen, Joan Daemen, Bart Preneel, Antoon Bosse-
laers, and Erik DeWin. Like Square, Shark is a generational parent of AES. The stated purpose
of this cipher [39] is to create a fast software implementation cipher which is resistant to differ-
ential and linear cryptanalysis. Shark’s six rounds consist of only two transformations (unlike
the four in AES and Square). These two transformations are a non-linear transformation and a
diffusion transformation. Shark also uses a key schedule algorithm like its successors. Shark’s

108

nrce factor nrce factor nrce factor
4142 1.000 4144 0.999 4148 1.000
5142 1.000 5144 0.999 5148 1.000
8142 1.000 8144 1.000 8148 1.000
3222 1.620 3224 2.178 3228 2.477
4222 1.030 4224 0.999 4228 1.000
5222 1.000 5224 1.000 5228 0.999
8222 1.000 8224 0.999 8228 0.999
3422 1.289 3424 1.000
4422 1.133 4424 1.000
5422 1.071 5424 0.999
8422 0.961 8424 0.999
3442 1.813
4442 1.152
5442 1.084
8442 1.036

Table 7.11: Factors for Square link model (organized by shape).

encryption algorithm works on a block of 64 bits and uses a key of 128 bits.

The authors’ concept was to find the best non-linear transformation idea and the best diffusion
transformation idea and then combine the two into a cipher. The idea was that combining two
great ideas would result in a stronger product. However, this idea ignores how well the two
ideas work together and the second and third order effects on the entire cipher (i.e., emergent
behavior could compromise security).

Shark’s non-linear transformation utilizes eight 8x8 bit non-linear S-boxes. These S-boxes also
use the inverse function and then an invertible affine function to remove the fixed points in
the inversion. Shark’s diffusion transformation multiplies the state array by a MDS (Maximal
Distance Separable) code. The purpose of this transformation is to provide an avalanche ef-
fect where a small change in the input to the round will cause a large change in the output.
This is similar in function to the circulant matrix in the Mix Columns step of AES. A MDS
code is chosen because they give an optimal branch number which translates into the greatest
avalanche effect possible. Shark specifically uses a Reed-Soloman code in the transformation’s
implementation.

The key scheduling process for Shark appears to be quite complicated in their paper [39]. It
is also quite expensive (time-wise) due to the overhead of adding extra entropy to the process.

109

nrce factor estimated time
3428 1.00 268,261 years
4428 1.00 536,173 years
5428 1.00 982,690 years
8428 1.00 1,965,030 years
3444 1.00 273,867 years
4444 1.00 988,296 years
5444 1.00 1,702,724 years
8444 1.00 3,846,010 years
3448 1.00 4.949 ·1024 years
4448 1.00 1.813 ·1025 years
5448 1.00 3.131 ·1025 years
8448 1.00 7.084 ·1025 years

Table 7.12: Estimated solution times for large Square variants.

However, it still looks like the keys are generated through a linear process like Square and not
like AES. This should result in a weaker cipher.

7.3 Anubis
Anubis, designed by Vincent Rijmen and Paulo S. L. M. Barreto, is the child of AES. Anubis
operates on blocks of 128 bits while its key length can range from 128 bits to 320 bits. However,
the key length must increase in steps of 32 bits. Like AES, an increase in key size results in an
increase in the number of rounds used in the encryption process. There are twelve rounds for
a 128-bit key, thirteen rounds for a 160-bit key, and so forth resulting in eighteen rounds for a
320-bit key.

In Anubis, there are three transformations in each round. These are a non-linear transformation
(using an S-box), a linear transformation, and a key addition. The non-linear transformation
utilizes an S-box that is completely different from all previously discussed ciphers in this dis-
sertation. This transformation pushes the state array through sixteen 8-bit by 8-bit S-boxes
which can be performed in parallel. Smaller pseudo-random 4x4 boxes generate these mini
S-boxes.. This shift in S-box usage within a cipher is done in order to make its hardware im-
plementation easier while making its polynomial representation more complex. Anubis’s linear
transformation consists of a matrix transposition followed by multiplication by an MDS matrix.
This step provides the cipher with diffusion and confusion. The key addition transposition is
identical to the other ciphers in this work.

110

The key schedule algorithm for Anubis is different from AES and its predecessors. It utilizes
a variant of the round function plus a projection over the key space. Other differences between
Anubis and AES are that Anubis 1) uses a different polynomial to define the finite field, 2) uses
entries from the S-box to define the round constant, and 3) only has one possible block size.
Additionally, all transformations within the Anubis rounds are involutions. Involutions are
bijective functions that are their own inverses. For a cipher, this means that the same software
and hardware can be used to encrypt and decrypt. This should make the cipher implementation
compact [40].

111

THIS PAGE INTENTIONALLY LEFT BLANK

112

CHAPTER 8:

Conclusion

This dissertation sets out to explore the NP-Hard problem of solving systems of multi-variate
polynomial equations that exist in a finite field. It analyzes the method of MRHS introduced by
Raddum and Semaev in 2006 and expands their techniques to solve the system more efficiently.
Our new techniques and knowledge are then applied to common encryption algorithms to show-
case their capabilities. While we did not render modern encryption standards null and void, we
did improve on existing work in the field and provide more evidence that AES’s structure can
play a significant role in its defeat.

In this final chapter, we review the dissertation’s research contributions, as well as discuss
directions for future research.

8.1 Contributions
The following are the dissertation’s main research contributions. The first three highlight how
we expand the innovative MRHS approach of Raddum and Semaev.

First, we modified the concept of MRHS equations to represent operations within the byte field
instead of the bit field. This improvement significantly reduces the number of variables and
equations within the target systems. It also clarifies the underlying structure of the system so
that it can be used against itself. Representing these equations in terms of larger fields is a
natural technique for ciphers such as AES. Specifically for full AES, this consisted of only 200
equations.

Second, we extended the concept of linking two equations to creating multi-links of any number
of equations. While our method of multi-linking uses the same type of information as normal
linking, we allow links of any number of equations, and thus gain information unavailable to
normal pair-wise linking. This enhanced information leads to greater efficiency in solving the
system.

Third, we extended the concept of agreeing one link at a time to multi-agreeing a growing set
of multi-links. Once right-hand sides are eliminated via multi-agreeing, the system is quickly
solved. This concept completely precludes the need for memory-limited gluing and guessing

113

operations. The trade-off is that our new approach is time-intensive due to the number of free
equations in the first multi-agree that eliminates RHSs.

Fourth, we performed numerous computational experiments to explore how to apply these meth-
ods most effectively. This leads to the discovery of suitable multi-agreeing strategies for various
shapes of AES variants, including a strategy for full AES. Once strategies are created for three
or four rounds of a cipher, these strategies can easily extend to ten rounds without increasing
the number of free equations. Surprisingly, we find many cases of AES variants that result in
multiple solutions when the system is solved. The presence of multiple solutions means that
multiple keys transform a plaintext to a single ciphertext.

Fifth, we executed the concept of multi-agreeing with multi-links on the cipher Square. To
accomplish this, we develop strategies to solve both the small variants and full Square.

Sixth, we found a multi-agreeing strategy for full AES that only used sixteen free equations.
This is comparable to using a brute force technique (trying all combinations of sixteen bytes
for the key). We also develop a time model for how long this strategy would take to execute on
a single computer processor. As far as we can determine, no other purely algebraic attack on
AES has been shown to be this efficient.

8.2 Future Research
This body of work brings forth several lines of future research. These lines exist in the mathe-
matical arena, the computing arena, and in applications.

There are five lines of future work which lie in the mathematical arena. First, the concept of
optimizing the basis of the link space through the creation of custom-designed links should
continue to be explored. Perhaps there exists a different set of multi-links for an AES shape
that will solve the system more efficiently than by only using the default set of multi-links.
An optimized basis might consist of multi-links with a reduced average number of equations
in them in order to reduce the number of free equations in the multi-agreeing order. Second,
additional exploration is needed in the search for optimal multi-agreeing orders. While the
orders presented in this research are efficient, this does not preclude the existence of a more
optimal order. Heuristics from the current computational experiments could be created to assist
in this endeavor.

Third, our methods and strategies could be expanded to the case of related keys. Many modern

114

cryptanalysis methods are designed for use on special cases of encryption where additional data
is known. The related key case, where a plaintext is encrypted by multiple keys that are related
in some fashion, is frequently studied. This construct creates additional MRHS equations that
could make the system faster to solve. Fourth, the concept of using multiple plaintext/ciphertext
pairs of information could still be explored. Perhaps there are occasions on which this concept
could assist in solving the system. Finally, this research noted that many cases of the small
scale AES variants yielded multiple keys that encrypt a given plaintext to a single ciphertext.
Exploration could be conducted to determine if there are relationships between certain keys or
plaintext inputs that allow this to occur.

There are two lines of future work in the computing arena. First, the computationally intensive
multi-agree that first eliminates RHSs could easily be parallelized over many processors. Sec-
ond, the agreeing tree concept can be coded to allow a computer to determine if the agreeing
orders created in this research can be tweaked in order to become more efficient.

Lastly, this method can also be applied to other problems in future work. Our techniques can be
applied to other symmetric block ciphers to analyze their strength. Also, these techniques are
not limited to cryptosystems. There are many other applications in other fields of study that can
be described by a system of multi-variate polynomial equations over a finite field.

115

THIS PAGE INTENTIONALLY LEFT BLANK

116

APPENDIX A:

Pseudo-Code for Multi-agree

Pseudo-code of the multi-agree algorithm
When the multi-agree algorithm reaches a check-for-consistency link—we call this kablooie!:

kablooie!

initialize combo of indices to RHS for each eq, and counters

checkcombo: // loop back here to try next combo

didcombos++;

for (each unagreed link) {

didlinks++;

loop to add up z values, except last

if (indexed link) { // last eq in link is new, indexed by z value

look up eq rhs index for this z

if (valid rhs idx) save it to combo

else if (no rhs for that z) goto checkskipped; //link does not agree

else {have repeated z value; set up to track repetition;

save rhs idx to combo}

} else // else this link is just a consistency check

if (z sum does not match z val of last eq)

goto checkskipped; // link does not agree

} // at this point, this link agrees; check next link

agreed: // at this point, have agreed set: count it; flag needed rhs

loop to flag each rhs in agreed set as needed

goto nextcombo; // jump over next section

checkskipped: //come here when link does not agree, reset any skipped eqs

if (skipped over some variable eqs) reset combo for skipped eqs

nextcombo: // find next combo of rhs indices (for variable eqs) to try

117

do { // seek next combo of rhs, starting at current eq in current link

if (eq indexed) { // then may be repeated zs

if (repeats remain for same z) {

use next rhs for same z; this link OK, skip to next

goto checkcombo; // loop back to top of outer loop

} // at this point, no more repeats for this z, loop for prev eq

} else // variable eq

if (haven't tried all rhs for this eq) {

try next rhs;

goto checkcombo; // loop back to top of outer loop

}

else // no more rhs for this eq;

reset this eq; // and loop for prev eq

} while (got another combo to check);

// at this point, have tried all combos

118

APPENDIX B:

Agreeing Order for A44e

This is the multi-agreeing order used for the case of A44e. There are sixteen degrees of freedom
so there are sixteen check-for-consistency links within this order.

Table B.1: Agreeing order for A44e.

link number new eqns # degrees of freedom comment

Link #51 2,43 1
Link #21 6,7,10,11,14,40,41,42,63 9

Link #115 51 9
Link #147 55 9
Link #83 3,47 10

Link #123 52 10
Link #59 4,44 11
Link #75 1,46 12
Link #23 17 12
Link #43 13 12
Link #67 0,9,12,45 15
Link #37 67 15
Link #55 19 15
Link #87 16 15
Link #99 49 15

Link #119 20 15
Link #139 54 15
Link #163 57 15
Link #15 27 15
Link #39 22 15
Link #63 30 15
Link #71 23 15

Link #111 33 15

Continued on next page

119

Table B.1: Agreeing order for A44e.

link number new eqns # degrees of freedom comment

Link #135 25 15
Link #159 36 15
Link #167 26 15
Link #31 28 15
Link #47 29 15
Link #95 32 15

Link #143 35 15
Link #11 38 15
Link #19 39 15

Link #107 5,50 16
Link #35 8 16
Link #33 66 16
Link #27 15 16
Link #91 48 16

Link #131 53 16
Link #1 58 16
Link #5 59 16

Link #155 56 16
Link #9 60 16

Link #13 61 16
Link #17 62 16
Link #25 64 16
Link #29 65 16
Link #41 68 16
Link #45 69 16
Link #49 70 16
Link #53 71 16
Link #57 72 16
Link #61 73 16
Link #65 74 16
Link #69 75 16

Continued on next page

120

Table B.1: Agreeing order for A44e.

link number new eqns # degrees of freedom comment

Link #73 76 16
Link #77 77 16
Link #81 78 16
Link #85 79 16
Link #89 80 16
Link #93 81 16
Link #97 82 16

Link #101 83 16
Link #105 84 16
Link #109 85 16
Link #113 86 16
Link #117 87 16
Link #121 88 16
Link #125 89 16
Link #129 90 16
Link #133 91 16
Link #137 92 16
Link #141 93 16
Link #145 94 16
Link #149 95 16
Link #153 96 16
Link #157 97 16
Link #161 98 16
Link #165 99 16
Link #0 100 16
Link #2 101 16
Link #4 102 16
Link #6 103 16
Link #8 104 16

Link #10 105 16
Link #12 106 16

Continued on next page

121

Table B.1: Agreeing order for A44e.

link number new eqns # degrees of freedom comment

Link #14 107 16
Link #16 108 16
Link #18 109 16
Link #20 110 16
Link #22 111 16
Link #24 112 16
Link #26 113 16
Link #28 114 16
Link #30 115 16
Link #32 116 16
Link #34 117 16
Link #36 118 16
Link #38 119 16

Link #151 18 16
Link #40 120 16
Link #42 121 16
Link #44 122 16
Link #46 123 16
Link #48 124 16
Link #50 125 16
Link #52 126 16
Link #54 127 16
Link #56 128 16
Link #58 129 16
Link #60 130 16
Link #62 131 16
Link #64 132 16
Link #66 133 16
Link #68 134 16
Link #70 135 16
Link #7 21 16

Continued on next page

122

Table B.1: Agreeing order for A44e.

link number new eqns # degrees of freedom comment

Link #72 136 16
Link #74 137 16
Link #76 138 16
Link #78 139 16
Link #80 140 16
Link #82 141 16
Link #84 142 16
Link #86 143 16
Link #88 144 16
Link #90 145 16
Link #92 146 16
Link #94 147 16
Link #96 148 16
Link #98 149 16

Link #100 150 16
Link #102 151 16
Link #103 24 16
Link #104 152 16
Link #106 153 16
Link #108 154 16
Link #110 155 16
Link #112 156 16
Link #114 157 16
Link #116 158 16
Link #118 159 16
Link #120 160 16
Link #122 161 16
Link #124 162 16
Link #126 163 16
Link #128 164 16
Link #130 165 16

Continued on next page

123

Table B.1: Agreeing order for A44e.

link number new eqns # degrees of freedom comment

Link #132 166 16
Link #134 167 16
Link #79 31 16

Link #136 168 16
Link #138 169 16
Link #140 170 16
Link #142 171 16
Link #168 184 16
Link #169 – 15 check-for-consistency
Link #182 191 15
Link #183 – 14 check-for-consistency
Link #127 34 14
Link #3 37 14

Link #188 194 14
Link #189 – 13 check-for-consistency
Link #194 197 13
Link #195 – 12 check-for-consistency
Link #144 172 12
Link #146 173 12
Link #148 174 12
Link #150 175 12
Link #170 185 12
Link #171 – 11 check-for-consistency
Link #176 188 11
Link #177 – 10 check-for-consistency
Link #190 195 10
Link #191 – 9 check-for-consistency
Link #196 198 9
Link #197 – 8 check-for-consistency
Link #152 176 8
Link #154 177 8

Continued on next page

124

Table B.1: Agreeing order for A44e.

link number new eqns # degrees of freedom comment

Link #156 178 8
Link #158 179 8
Link #172 186 8
Link #173 – 7 check-for-consistency
Link #178 189 7
Link #179 – 6 check-for-consistency
Link #184 192 6
Link #185 – 5 check-for-consistency
Link #198 199 5
Link #199 – 4 check-for-consistency
Link #160 180 4
Link #162 181 4
Link #164 182 4
Link #166 183 4
Link #174 187 4
Link #175 – 3 check-for-consistency
Link #180 190 3
Link #181 – 2 check-for-consistency
Link #186 193 2
Link #187 – 1 check-for-consistency
Link #192 196 1
Link #193 – 0 solved with this check

125

THIS PAGE INTENTIONALLY LEFT BLANK

126

APPENDIX C:

AES MRHS Equation Creation Code

This appendix contains the C code for the construction of AES MRHS equations. It consists of
a main file (aes_eqs_encr_f_blks) and a header file (eqs_io_f_blks).

aes_eqs_encr_f_blks.c

/∗
aes_eqs.c

version: 2012 Apr 20

Generate MRHS Equations for

Small Scale Variants of the AES algorithm

Also does the encryption!

Output in field elements, not bits!

Handles multiple blocks!!

Notes: always uses ∗ form: last round no MixCols

always keysize = block size

optional command line arguments:

variant (string) = "nrce" to specify small−scale variant of AES:

n (hex) is # rounds (1 − A; default=A=10)

r (int) is # rows (1, 2, 4; default=4)

c (int) is # cols (1, 2, 4; default=4)

e (int) is # bits in word (2, 4, 8; default=8)

defaults are "A448" for standard AES = SR∗(10; 4; 4; 8)

nblocks (int) = number of plaintext blocks to encrypt (default = 1)

key (hex) = key block (default is zero block)

input (string) = filename of input file of plaintext (default is NULL)

while all the above are optional, you must have one to have the next...

If no input file is specified, random blocks will be generated.

output goes to stdout

save all the X state data (output of S−box after ShiftRows) and K key data,

127

print it out after the equations.

encryption re−organized the to give the X state:

put ShiftRows before S−box, as part of previous round

do NOT do "in place"; rather, put result in new place.

(ARS) (MARS)∗(n−1) (A) rather than

(A) (SRMA)∗(n−1) (SRA) [where R is RowShift, S is SubstBytes, ...]

Does actual KeySchedule and Encrypt.

(Note: keep InvMix in case do non−star versions.)

∗/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

//#define OUTPUTBITS // to print output in bits (otherwise in field elements)

#define MAXROUNDS 10
#define MAXROWS 4
#define MAXCOLS 4
#define MAXBITS 8
#define MAXNBLOCKS 16 // number of plaintext blocks

#define MAXBLOCK MAXROWS∗MAXCOLS
#define MAXKEY MAXBLOCK
#define MAXVARS MAXBLOCK+MAXROUNDS∗MAXROWS + MAXNBLOCKS∗ (

MAXROUNDS−1)∗MAXBLOCK
#define SR(c,r) ((c+r) & (nCols−1))

FILE ∗infile;
unsigned char RoundKeys[(MAXROUNDS + 1) ∗MAXBLOCK];
unsigned char BlockStates[MAXNBLOCKS∗ (MAXROUNDS + 2) ∗MAXBLOCK];
unsigned int ∗Log;
unsigned char ∗ALog, ∗Sbox, ∗Mix, ∗InvMix, fieldmask;
int nRounds = 10, nRows = 4, nCols = 4, nBits = 8, star = 1, field, block,

nBlocks = 1,
KeyBits, KeyCols, nKeyCols;

128

int nEqs, nVars, nbVars, nKeyVars, bstates, CurrentVars;
unsigned char blkbuf[MAXBLOCK], ∗CT, ∗PT, Eq[2][MAXVARS], Data[2];
enum InOut { In, Out };
enum VarType { Key, X, State };

unsigned int Log8[256] = {
0x00,0x00,0x19,0x01,0x32,0x02,0x1A,0xC6,0x4B,0xC7,0x1B,0x68,0x33,0xEE,0xDF,0x03,
0x64,0x04,0xE0,0x0E,0x34,0x8D,0x81,0xEF,0x4C,0x71,0x08,0xC8,0xF8,0x69,0x1C,0xC1,
0x7D,0xC2,0x1D,0xB5,0xF9,0xB9,0x27,0x6A,0x4D,0xE4,0xA6,0x72,0x9A,0xC9,0x09,0x78

,
0x65,0x2F,0x8A,0x05,0x21,0x0F,0xE1,0x24,0x12,0xF0,0x82,0x45,0x35,0x93,0xDA,0x8E,
0x96,0x8F,0xDB,0xBD,0x36,0xD0,0xCE,0x94,0x13,0x5C,0xD2,0xF1,0x40,0x46,0x83,0x38,
0x66,0xDD,0xFD,0x30,0xBF,0x06,0x8B,0x62,0xB3,0x25,0xE2,0x98,0x22,0x88,0x91,0x10,
0x7E,0x6E,0x48,0xC3,0xA3,0xB6,0x1E,0x42,0x3A,0x6B,0x28,0x54,0xFA,0x85,0x3D,0xBA

,
0x2B,0x79,0x0A,0x15,0x9B,0x9F,0x5E,0xCA,0x4E,0xD4,0xAC,0xE5,0xF3,0x73,0xA7,0x57

,
0xAF,0x58,0xA8,0x50,0xF4,0xEA,0xD6,0x74,0x4F,0xAE,0xE9,0xD5,0xE7,0xE6,0xAD,0

xE8,
0x2C,0xD7,0x75,0x7A,0xEB,0x16,0x0B,0xF5,0x59,0xCB,0x5F,0xB0,0x9C,0xA9,0x51,0

xA0,
0x7F,0x0C,0xF6,0x6F,0x17,0xC4,0x49,0xEC,0xD8,0x43,0x1F,0x2D,0xA4,0x76,0x7B,0xB7,
0xCC,0xBB,0x3E,0x5A,0xFB,0x60,0xB1,0x86,0x3B,0x52,0xA1,0x6C,0xAA,0x55,0x29,0

x9D,
0x97,0xB2,0x87,0x90,0x61,0xBE,0xDC,0xFC,0xBC,0x95,0xCF,0xCD,0x37,0x3F,0x5B,0

xD1,
0x53,0x39,0x84,0x3C,0x41,0xA2,0x6D,0x47,0x14,0x2A,0x9E,0x5D,0x56,0xF2,0xD3,0xAB,
0x44,0x11,0x92,0xD9,0x23,0x20,0x2E,0x89,0xB4,0x7C,0xB8,0x26,0x77,0x99,0xE3,0xA5,
0x67,0x4A,0xED,0xDE,0xC5,0x31,0xFE,0x18,0x0D,0x63,0x8C,0x80,0xC0,0xF7,0x70,0x07,
};

unsigned char ALog8[256] = {
0x01,0x03,0x05,0x0F,0x11,0x33,0x55,0xFF,0x1A,0x2E,0x72,0x96,0xA1,0xF8,0x13,0x35,
0x5F,0xE1,0x38,0x48,0xD8,0x73,0x95,0xA4,0xF7,0x02,0x06,0x0A,0x1E,0x22,0x66,0xAA,

129

0xE5,0x34,0x5C,0xE4,0x37,0x59,0xEB,0x26,0x6A,0xBE,0xD9,0x70,0x90,0xAB,0xE6,0x31,
0x53,0xF5,0x04,0x0C,0x14,0x3C,0x44,0xCC,0x4F,0xD1,0x68,0xB8,0xD3,0x6E,0xB2,0xCD

,
0x4C,0xD4,0x67,0xA9,0xE0,0x3B,0x4D,0xD7,0x62,0xA6,0xF1,0x08,0x18,0x28,0x78,0x88,
0x83,0x9E,0xB9,0xD0,0x6B,0xBD,0xDC,0x7F,0x81,0x98,0xB3,0xCE,0x49,0xDB,0x76,0

x9A,
0xB5,0xC4,0x57,0xF9,0x10,0x30,0x50,0xF0,0x0B,0x1D,0x27,0x69,0xBB,0xD6,0x61,0xA3,
0xFE,0x19,0x2B,0x7D,0x87,0x92,0xAD,0xEC,0x2F,0x71,0x93,0xAE,0xE9,0x20,0x60,0xA0

,
0xFB,0x16,0x3A,0x4E,0xD2,0x6D,0xB7,0xC2,0x5D,0xE7,0x32,0x56,0xFA,0x15,0x3F,0x41,
0xC3,0x5E,0xE2,0x3D,0x47,0xC9,0x40,0xC0,0x5B,0xED,0x2C,0x74,0x9C,0xBF,0xDA,0

x75,
0x9F,0xBA,0xD5,0x64,0xAC,0xEF,0x2A,0x7E,0x82,0x9D,0xBC,0xDF,0x7A,0x8E,0x89,0

x80,
0x9B,0xB6,0xC1,0x58,0xE8,0x23,0x65,0xAF,0xEA,0x25,0x6F,0xB1,0xC8,0x43,0xC5,0x54,
0xFC,0x1F,0x21,0x63,0xA5,0xF4,0x07,0x09,0x1B,0x2D,0x77,0x99,0xB0,0xCB,0x46,0xCA,
0x45,0xCF,0x4A,0xDE,0x79,0x8B,0x86,0x91,0xA8,0xE3,0x3E,0x42,0xC6,0x51,0xF3,0x0E,
0x12,0x36,0x5A,0xEE,0x29,0x7B,0x8D,0x8C,0x8F,0x8A,0x85,0x94,0xA7,0xF2,0x0D,0x17,
0x39,0x4B,0xDD,0x7C,0x84,0x97,0xA2,0xFD,0x1C,0x24,0x6C,0xB4,0xC7,0x52,0xF6,0x01

,
};

unsigned int Log4[16] = {
0, 0, 1, 4, 2, 8, 5, 10, 3, 14, 9, 7, 6, 13, 11, 12,
};

unsigned char ALog4[16] = {
1, 2, 4, 8, 3, 6, 12, 11, 5, 10, 7, 14, 15, 13, 9, 1,
};

unsigned int Log2[4] = {
0, 0, 1, 2,
};

130

unsigned char ALog2[4] = {
1, 2, 3, 1,
};

unsigned char Sbox8[256] = {
0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0

xC0,
0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0

xCF,
0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB

,
0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0

x08,
0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0

x8A,
0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16,
};

unsigned char Sbox4[16] = {
0x6,0xB,0x5,0x4,0x2,0xE,0x7,0xA,0x9,0xD,0xF,0xC,0x3,0x1,0x0,0x8,
};

unsigned char Sbox2[4] = {
2, 3, 1, 0,

131

};

unsigned char Mix4[4] = {
0x2,0x3,0x1,0x1,
};

unsigned char InvMix4[4] = {
0xE,0xB,0xD,0x9,
};

unsigned char InvMix42[4] = {
0x0,0x2,0x3,0x0,
};

unsigned char Mix2[2] = {
0x3,0x2,
};

unsigned char Mix1[1] = {
0x1,
};

// multiply by "2" in field

#define POLY8 0x1B
#define POLY4 0x13
#define POLY2 0x07
unsigned char HIBIT, POLY;
unsigned char mul2 (unsigned char x) {

unsigned char y;
y = x << 1;
if (x & HIBIT) y ^= POLY;
return(y);

}

132

// multiply two bytes in field

unsigned char mul(unsigned char x, unsigned char y)
{

if (x && y)
return (ALog[(Log[x] + Log[y]) % (field − 1)]);

else
return (0);

}

#include "eqs_io_f_blks.h" // include field I/O package

// set up specific small−scale variant of AES

// assumes main() already set: nRounds, nRows, nCols, nBits, star

int setup(void)
{

int returnval = 0;

// check parameters for validity

if (nBlocks < 1 || nBlocks > MAXNBLOCKS) {
nBlocks = 1;
returnval = 1;

}
if (nRounds < 1 || nRounds > MAXROUNDS) {

nRounds = 10;
returnval = 1;

}
if (!(nCols == 1 || nCols == 2 || nCols == 4)) {

nCols = 4;
returnval = 1;

}

switch (nBits) {
case 2:

Log = Log2;

133

ALog = ALog2;
Sbox = Sbox2;
POLY = POLY2;
field = 4;
break;

case 4:
Log = Log4;
ALog = ALog4;
Sbox = Sbox4;
POLY = POLY4;
field = 16;
break;

default:
nBits = 8;
returnval = 1; // if bad value, use default, fall thru

case 8:
Log = Log8;
ALog = ALog8;
Sbox = Sbox8;
POLY = POLY8;
field = 256;
break;

}

switch (nRows) {
case 1:

Mix = InvMix = Mix1;
break;

case 2:
Mix = InvMix = Mix2;
break;

default:
nRows = 4;
returnval = 1; // if bad value, use default, fall thru

134

case 4:
Mix = Mix4;
InvMix = (nBits == 2) ? InvMix42 : InvMix4;
break;

}
fieldmask = field − 1;
HIBIT = 1 << (nBits − 1);
setScale(); // set up bit matrices for scalars

block = nRows ∗ nCols;
bstates = (nRounds + 2) ∗ block;
KeyBits = block ∗ nBits;
nKeyCols = (nRounds + 1) ∗ nCols;
nKeyVars = block + nRounds ∗ nRows;
nbVars = block ∗ (nRounds − 1);
nVars = nKeyVars + nBlocks ∗ nbVars;
nEqs = nVars + (nBlocks−1) ∗ block;

srand((unsigned)(nRows | nCols<<2 | nBits<<4 | nRounds<<8 | nBlocks << 12));

return returnval;
}

int KeySchedule(unsigned char Key[])
{

int colbits, returnval = 0;
int r, c;
unsigned char col[MAXROWS], t, rcon;

colbits = nRows ∗ nBits;
KeyCols = KeyBits / colbits;

#define NOISY 0
#if NOISY
fprintf(stderr,"−KeySched: colbits=%d, KeyCols=%d, nKeyCols=%d, Key=%p\n",
colbits, KeyCols, nKeyCols, Key);

fprintf(stderr,"−Key: ");

135

for (r = 0; r < block; r++) fprintf(stderr, ((nBits>4) ? "%02X" : "%01X"), Key[r]);
fprintf(stderr,"\n"); fflush(stderr);
#endif

/∗ Copy key ∗/
for (c = 0; c < KeyCols; c++)

for (r = 0; r < nRows; r++)
RoundKeys[r + nRows ∗ c] = Key[r + nRows ∗ c];

for (r = 0; r < nRows; r++)
col[r] = Key[r + nRows ∗ (c − 1)];

#if NOISY
fprintf(stderr,"−KeySched: Key copied; c=%d, col= ", c);
for (r = 0; r < nRows; r++) fprintf(stderr, (nBits>4)?"%02X":"%01X", col[r]);

fprintf(stderr,"\n"); fflush(stderr);
#endif

for (rcon = 1; c < nKeyCols; c++) {
/∗ calculate new columns until enough ∗/
if (c % KeyCols == 0) {

t = col[0];
for (r = 0; r < (nRows − 1); r++)

col[r] = Sbox[col[r + 1]];
col[nRows − 1] = Sbox[t];
col[0] ^= rcon;

#if NOISY
fprintf(stderr,"−KeySched: apply F; t=%X, rcon=%X, col= ", t, rcon);
for (r = 0; r < nRows; r++) fprintf(stderr, (nBits>4)?"%02X":"%01X", col[r]);

fprintf(stderr,"\n"); fflush(stderr);
#endif

rcon = mul(2, rcon);
}

// need to handle KeyCols = 1 differently

for (r = 0; r < nRows; r++)
RoundKeys[r + nRows ∗ c] = (KeyCols == 1) ? col[r] :

(col[r] ^= RoundKeys[r + nRows ∗ (c − KeyCols)]);

136

#if 0
fprintf(stderr,"−KeySched: RoundKeys col[%d]= ", c);
for (r = 0; r < nRows; r++) fprintf(stderr, (nBits>4)?"%02X":"%01X",
RoundKeys[r + nRows ∗ c]);

fprintf(stderr,"\n"); fflush(stderr);
#endif

}

return returnval;
}

// do one round on block: (ARS) for #0 or else (MARS)

void doround(unsigned char State[], unsigned char roundKey[],
int round)

{
unsigned char t[MAXROWS];
int i, r, c, offset=0;
if (round) // if normal round

for (c = 0; c < nCols; c++) {
for (r = 0; r < nRows; r++)

for (t[r] = i = 0; i < nRows; i++)
t[r] ^= // MixColumns

mul(Mix[i], State[((r + i) % nRows) + nRows ∗ c]);
for (r = 0; r < nRows; r++)

State[block + r + nRows ∗ c] = t[r];
}

else offset = −block;
State += block;

for (i = 0; i < block; i++)
State[i] = State[offset+i] ^ roundKey[i]; // AddRoundKey

for (r = 1; r < nRows; r++) {
for (c = 0; c < nCols; c++) // ShiftRows

t[c] = State[r + nRows ∗ ((c + r) % nCols)];
for (c = 0; c < nCols; c++)

137

State[r + nRows ∗ c] = t[c];
}

for (i = 0; i < block; i++)
State[i] = Sbox[State[i]]; // SubBytes

}

// do round #n on block: (A)

void doroundn(unsigned char State[], unsigned char roundKey[])
{

int i;

for (i = 0; i < block; i++)
State[block + i] = State[i] ^ roundKey[i]; // AddRoundKey

}

// encrypt block (NOT in place − keep output of each S−box)

void encrypt(unsigned char States[])
{

int i, round;

for (i = 0; i < block; i++)
States[i] = PT[i]; // copy PT in

for (round = 0; round < nRounds; round++) {
doround(States + round∗block, RoundKeys + round∗block, round);

}
doroundn(States + round∗block, RoundKeys + round∗block);

}

void NewEq(void)
{

int i, r;

for (r = In; r <= Out; r++) {

138

Data[r] = 0;
for (i = 0; i < nVars; i++)

Eq[r][i] = 0;
}

}

int VarNum(enum VarType var,
int round, int col, int row)

{
switch (var) {
case Key:

if (round == 0)
return (col ∗ nRows + row);

else // then col == 0

return (block + (round−1) ∗ nRows + row);
case X:

return (CurrentVars + (round−1) ∗ block + col ∗ nRows + row);
}
return (0); // dummy

}

void AddVar(enum InOut line, enum VarType var,
int round, int col, int row, int scale)

{
int r;

switch (var) {
case Key:

if (round == 0 || col == 0)
Eq[line][VarNum(Key, round, col, row)] ^= scale;

else {
AddVar(line, Key, round, col−1, row, scale);
AddVar(line, Key, round−1, col, row, scale);

}

139

break;
case X:

Eq[line][VarNum(X, round, col, row)] ^= scale;
break;

case State: // scale must be 1

for (r = 0; r < nRows; r++) {
AddVar(line, X, round, col, (row+r)&(nRows−1), Mix[r]);

}
AddVar(line, Key, round, col, row, 1);
break;

}
}

void KeyScheduleEqs(void)
{

int i, r;
unsigned char rcon;

for (i = 1, rcon = 1; i <= nRounds; i++) {
for (r = 0; r < nRows; r++) {

NewEq();
AddVar(Out, Key, i, 0, r, 1);
if (nCols > 1) AddVar(Out, Key, i−1, 0, r, 1);
AddVar(In, Key, i−1, nCols−1, (r+1)&(nRows−1), 1);
if (r == 0) Data[Out] = rcon;
WriteEq();

}
rcon = mul2(rcon);

}
}

// do only 1 round on block

void doonlyroundEqs(int round)
{

140

int r, c;

for (c = 0; c < nCols; c++) {
for (r = 0; r < nRows; r++) {

NewEq();
AddVar(Out, Key, round, c, r, 1);
Data[Out] = CT[r + nRows ∗ c];
AddVar(In, Key, round−1, SR(c,r), r, 1);
Data[In] = PT[r + nRows ∗ SR(c,r)];
WriteEq();

}
}

}

// do round #1 on block

void doround1Eqs(int round)
{

int r, c;

for (c = 0; c < nCols; c++) {
for (r = 0; r < nRows; r++) {

NewEq();
AddVar(Out, X, round, c, r, 1);
AddVar(In, Key, round−1, SR(c,r), r, 1);
Data[In] = PT[r + nRows ∗ SR(c,r)];
WriteEq();

}
}

}

// do one round on block

void doroundEqs(int round)
{

int r, c;

141

for (c = 0; c < nCols; c++) {
for (r = 0; r < nRows; r++) {

NewEq();
AddVar(Out, X, round, c, r, 1);
AddVar(In, State, round−1, SR(c,r), r, 1);
WriteEq();

}
}

}

// do round #n on block

void doroundnEqs(int round)
{

int r, c;

for (c = 0; c < nCols; c++) {
for (r = 0; r < nRows; r++) {

NewEq();
AddVar(Out, Key, round, c, r, 1);
AddVar(In, State, round−1, SR(c,r), r, 1);
Data[Out] = CT[r + nRows ∗ c];
WriteEq();

}
}

}

void EncryptEqs(void)
{

int round;

if (nRounds == 1) {
doonlyroundEqs(1);
return;

142

}
doround1Eqs(1);
for (round = 2; round < nRounds; round++) {

doroundEqs(round);
}
doroundnEqs(round);

}

int main(int argc, char ∗argv[])
{
unsigned char Key[MAXBLOCK];
int b;

if (argc > 1) {
sscanf(argv[1], "%1x%1d%1d%1d",

&nRounds, &nRows, &nCols, &nBits);
}
if (argc > 2) {

sscanf(argv[2], "%d",
&nBlocks);

}
fprintf(stderr, " nBlocks=%d, nRounds=%d, nRows=%d, nCols=%d, nBits=%d, star

=%d\n",
nBlocks, nRounds, nRows, nCols, nBits, star);

if (setup())
fprintf(stderr,

"Bad parameter(s); now:\n nBlocks=%d, nRounds=%d, nRows=%d,
nCols=%d, nBits=%d, star=%d\n",

nBlocks, nRounds, nRows, nCols, nBits, star);
// by default KeyBits = bits in block

ReadBlock((argc > 3) ? argv[3] : "", Key);
if (argc > 4) {

if ((infile = fopen(argv[4], "rb")) == NULL) {
fprintf(stderr, "Could not open input file %s\n", argv[4]);

143

}} else infile = NULL;

// do encryption

PT = blkbuf;
KeySchedule(Key);

for (b=0; b< nBlocks; b++) {
NextBlock(); // puts next PT block into "PT"

encrypt(BlockStates+(b∗bstates));
}

// make system of eqs

WriteSystemHeader();
KeyScheduleEqs();

// do only single block

for (b=0; b < nBlocks; b++) {
CurrentVars = nKeyVars + b∗nbVars; // global var for indexing vars

PT = BlockStates+(b∗bstates); // point to PT block

CT = BlockStates+((b+1)∗bstates − block); // point to CT block

EncryptEqs();
}

WriteVars();
printf(" nRounds=%d, nRows=%d, nCols=%d, nBits=%d, star=%d\n",

nRounds, nRows, nCols, nBits, star);
WriteKeys();
WriteStates();

return (0);
}

eqs_io_f_blks.h

/∗
eqs_io.h

version: 2012 Apr 15

144

∗/

void NextBlock(void) // generate random data blocks

{
int i;
for (i=0; i< block; i++) PT[i] = rand() & fieldmask;

}

/∗
Write Equation, field elements version

∗/

char ∗FieldFormat;
void setScale(void){ // set up FieldFormat

FieldFormat = (nBits > 4)? "%02X" : "%01X";
}

void writeValue(unsigned int x){
/∗ writes field element x ∗/

printf(FieldFormat, x);
}

void WriteSystemHeader(void) // note third number on top line: #bits in field

{
printf(" %d %d %d\n", nVars, nEqs, nBits);

}

void WriteEq(void)
{

int i, r;

printf(" %d %d\n", 2, field);

145

for (r = In; r <= Out; r++) {
for (i = 0; i < nVars; i++)

writeValue(Eq[r][i]);
printf("\n");
}
for (i=0; i < field; i++) {

if (!(i&15) && i) printf("\n");
writeValue(i ^ Data[In]);
writeValue(Sbox[i] ^ Data[Out]);
}
printf("\n");

}

// read hex data into block

void ReadBlock(char str[], unsigned char T[])
{

char ∗j;
int i, word;

switch (nBits) {
case 2:
if (block == 1) { // this is the only case with an odd number of words

word = 0;
sscanf(str, "%1x", &word);
T[0] = (unsigned char) (word & fieldmask);
i = 1; break;
}
for (i = 0, j = str; i < block;) {

if (sscanf(j++, "%1x", &word) != 1) break;
T[i++] = (unsigned char) ((word>>2) & fieldmask);
T[i++] = (unsigned char) (word & fieldmask);

}
break;

case 4:

146

for (i = 0; i < block; i++) {
if (sscanf(str+i, "%1x", &word) != 1) break;
T[i] = (unsigned char) word;

}
break;

case 8:
for (i = 0; i < block; i++) {

if (sscanf(str+2∗i, "%2x", &word) != 1) break;
T[i] = (unsigned char) word;

}
break;

default:
i = 0;

}
for (; i < block; i++)

T[i] = 0;
}

// write hex data from block

void WriteBlock(unsigned char T[])
{

int i;

for (i = 0; i < block; i++)
writeValue(T[i] & fieldmask);

}

// write Round Keys

void WriteKeys(void)
{

int round;

printf("Round Keys:\n");
for (round = 0; round <= nRounds; round++) {

147

printf(" %2d : ", round);
WriteBlock(RoundKeys + round∗block);
printf("\n");
}

}

// write States

void WriteStates(void)
{

int b, round;

printf("States:\n");
for (b = 0; b < nBlocks; b++) {

printf(" Block %2d : \n", b);
for (round = 0; round <= nRounds+1; round++) {

printf(" %2d : ", round);
WriteBlock(BlockStates+b∗bstates + round∗block);
printf("\n");
}}

}

// write Variables

void WriteVars(void)
{

int i, b, round;

printf("Variables:\n");
for (i = 0; i < block; i++)

writeValue(RoundKeys[i]);
printf("\n");

for (round = 1; round <= nRounds; round++) {
for (i = 0; i < nRows; i++)

writeValue(RoundKeys[round∗block + i]);
printf("\n");

148

}
for (b = 0; b < nBlocks; b++) {
for (round = 1; round < nRounds; round++) {

for (i = 0; i < block; i++)
writeValue(BlockStates[b∗bstates + round∗block + i]);

printf("\n");
}}

}

149

THIS PAGE INTENTIONALLY LEFT BLANK

150

APPENDIX D:

AES MRHS Algorithm Code

This appendix contains the C code for the manipulation of AES MRHS equations as detailed in
this body of work. It consists of a main file (main) and three header files (fieldarith, newagree,
newmrhs).

main.c

/∗
new mrhs main.c

version: 2013 Feb 23

Interactive tool to solve MRHS equations

input file format:

header:

Nvar # variables

neqs # equations (symbols)

nbits # field size in bits

for each equation symbol:

nrows # rows

nrhs # RHS

A (by rows, field elements)

B (by cols, field elements)

∗/

#include "newmrhs.h" /∗ includes all others ∗/
#include <ctype.h>

#define SPECIAL −30000 // a flag value

int getparam(char input[], int special) {

151

int i;

if (input[1])
i = 1;

else {
scanf("%100s", input);
i = 0;

}
if (sscanf(input + i, "%d", &i) != 1)

i = special;
return i ;

}

int main (int argc, const char ∗ argv[]) {
int i, j, k, n, ∗eqlist;
Status rv;
char input[101], c, ∗filename;
const char menu[] =
"Enter commands from the menu below.\n"
" # means a number is required: use nondigit for default value (or for ’all’)\n"
"r # ReduceEqs (number, then indices)\n"
"l # LinkEqs (number [default: all], then indices)\n"
"n # newagree (Link # [default: 0])\n"
"x print solutions from new−agreed sets\n"
"z # print z value matrix of link (Link # [def. 0])\n"
"i # EquationInfo E[#] [default: all]\n"
"p # print Equation E[#]\n"
"e print LinEquation LE\n"
"k # print Link E[#] [default: all]\n"
"d # disagree (Link # [def. 0], then RHS indices)\n"
"f # find RHS that agree (Link # [def. 0], then Eq #, RHS indices for others)\n

"
"w WriteSystem(S);\n"
"v WriteLinkVars(S);\n"

152

"y WriteLinkEqs(S);\n"
"g WriteAgreedLinks(S);\n"
"q QUIT (exit)\n"
"∗ multiply field elements (hex)\n"
"− invert field element (hex)\n"
"/ divide field elements (hex)\n"
"^ field element to power (hex, int)\n"
"+ add field elements (hex)\n"
;

#ifdef SQUARE
fprintf(stderr, " using SQUARE arithmetic\n");

#else
fprintf(stderr, " using AES arithmetic\n");

#endif

S = (Sys ∗) malloc(sizeof(Sys));
/∗
read in header, set up sys, setup & read eqns

write system

∗/

if (argc > 1)
filename = (char ∗) argv[1];

else {
fprintf(stderr, "Enter filename for input system: ");
scanf("%100s", input);
filename = input;

}
if (ReadSystem(S, filename)) {

fprintf(stderr, "Error in main: did not get input system; abort!\n");
return (1);

}
new_init_agreed();

153

printf("got: Nvar = %d; neqs = %d; Nbits = %d\n", Nvar, S−>neqs, Nbits);

eqlist = (int ∗) malloc(S−>neqs ∗ sizeof(int));

printf("%s",menu);
printf("> ");
while (scanf("%100s", input) == 1) {

rv = OK;
switch (c = input[0]) {

case ’a’:
case ’n’:

i = getparam(input, 0);
if (i < 0) { i = −i; k = 1; }
else if (input[1]==’−’) k = 1;
else k = 0;
if (i >= S−>nlinks) {

fprintf(stderr, " bad link #: %d\n", i);
break;

}
new_agree_link(S−>L + i, k);
break;

case ’s’:
case ’x’:

WriteSolns();
break;

case ’v’:
WriteLinkVars(S);
break;

case ’y’:
WriteLinkEqs(S);

154

break;

case ’g’:
WriteAgreedLinks(S);
break;

case ’r’:
case ’l’:

n = getparam(input, SPECIAL);
if (n == SPECIAL) { /∗ do all ∗/

n = S−>neqs;
for (i = 0; i < n; ++i)

eqlist[i] = i;
}
else if (n >= 0 && n <= S−>neqs)

for (i = 0; i < n; ++i) {
if (scanf("%d", &j) < 1 || j < 0 || j >= S−>neqs) {

fprintf(stderr, " bad eq #: %d\n", j);
n = i;
break;

}
eqlist[i] = j;

}
else {

fprintf(stderr, " bad # eqs: %d\n", n);
break;

}
if (c == ’r’) {

i = ReduceEqs(S−>E, n, eqlist);
printf(" common dimension = %d\n", i);

}
if (c == ’l’) {

j = S−>nlinks;
i = LinkEqs(S, n, eqlist);

155

if (i)
printf(" %2d new links, total dimension = %d\n", S−>nlinks − j, i);

else
printf(" no new linkage\n");

}
break;

case ’i’:
i = getparam(input, SPECIAL);
if (i == SPECIAL)

for (i = 0; i < S−>neqs; ++i)
EquationInfo(S, i);

else if (i >= 0 && i < S−>neqs)
EquationInfo(S, i);

else
fprintf(stderr, " bad eq #: %d\n", i);

break;

case ’p’:
i = getparam(input, SPECIAL);
if (i == SPECIAL) {

printf(" Equations 0 − %d:\n", S−>neqs − 1);
for (i = 0; i < S−>neqs; ++i)

WriteEquation(S−>E + i);
}
else if (i >= 0 && i < S−>neqs){

printf(" Equation %d:\n", i);
WriteEquation(S−>E + i);
break;

}
else

fprintf(stderr, " bad eq #: %d\n", i);
break;

156

case ’e’:
printf(" Linear Equation:\n");
WriteEquation(S−>LE);
break;

case ’k’:
i = getparam(input, SPECIAL);
if (i == SPECIAL)

for (i = 0; i < S−>nlinks; ++i)
WriteLink(S−>L + i);

else if (i >= 0 && i < S−>nlinks)
WriteLink(S−>L + i);

else
fprintf(stderr, " bad link #: %d\n", i);

break;

case ’z’:
i = getparam(input, 0);
if (i >= 0 && i < S−>nlinks)

WriteZ(S−>L + i);
else

fprintf(stderr, " bad link #: %d\n", i);
break;

case ’d’: /∗ rhs_disagree ∗/
i = getparam(input, 0);
if (i < 0 || i >= S−>nlinks) {

fprintf(stderr, " bad link #: %d\n", i);
break;

}
n = S−>L[i].neqs;
for (k = 0; k < n; ++k) {

if (scanf("%d", &j) < 1 || j < 0 || j >= S−>E[S−>L[i].eqlist[k]].nrhs) {
fprintf(stderr, " bad RHS # for eq %d: %d\n", S−>L[i].eqlist[k], j);

157

break;
}
eqlist[k] = j;

}
if (k == n)

printf(" in link %d, given RHS %sagree\n", i, rhs_disagree(S−>L + i, eqlist)
? "dis" : "");

break;

case ’f’: /∗ find_rhs(Link ∗ link, int zeq, int

∗ ∗irhs, int ∗out) ∗/
i = getparam(input, 0);
if (i < 0 || i >= S−>nlinks) {

fprintf(stderr, " bad link #: %d\n", i);
break;

}
if (scanf("%d", &n) < 1) {

fprintf(stderr, " missing #\n");
break;

}
if (n < 0 || n >= S−>neqs) {

fprintf(stderr, " bad eq #: %d\n", n);
break;

}
for (k = 0; k < S−>L[i].neqs − 1; ++k) {

if (scanf("%d", &j) < 1 || j < 0 || j >= S−>E[S−>L[i].eqlist[k]].nrhs) {
fprintf(stderr, " bad RHS # for eq %d: %d\n", S−>L[i].eqlist[k], j);
break;

}
eqlist[k] = j;

}
if (k == S−>L[i].neqs − 1) {

j = find_rhs(S−>L + i, n, eqlist, eqlist);

158

printf(" in link %d, given RHS for other eqs, in eq %d these %d RHS
agree:\n ", i, n, j);

for (k = 0; k < j; ++k)
printf(" %d", eqlist[k]);

printf("\n");
}
break;

case ’w’:
WriteSystem(S);
break;

case ’∗’:
i = 0;
j = 1;
scanf(InFormat, &i);
i &= FieldMask;
scanf(InFormat, &j);
j &= FieldMask;
printf("∗∗ multiply: ");
printf(OutFormat, i);
printf(" ∗ ");
printf(OutFormat, j);
printf(" = ");
printf(OutFormat, fmul(i, j));
printf("\n");
break;

case ’/’:
i = 0;
j = 1;
scanf(InFormat, &i);
i &= FieldMask;
scanf(InFormat, &j);

159

j &= FieldMask;
printf("∗∗ divide: ");
printf(OutFormat, i);
printf(" / ");
printf(OutFormat, j);
printf(" = ");
printf(OutFormat, fdiv(i, j));
printf("\n");
break;

case ’^’:
i = 0;
j = 1;
scanf(InFormat, &i);
i &= FieldMask;
scanf("%d", &j);
printf("∗∗ power: ");
printf(OutFormat, i);
printf(" ^ %d = ", j);
printf(OutFormat, fpow(i, j));
printf("\n");
break;

case ’−’:
j = 1;
scanf(InFormat, &j);
j &= FieldMask;
printf("∗∗ invert: ");
printf(OutFormat, j);
printf(" ^{−1} = ");
printf(OutFormat, finv(j));
printf("\n");
break;

160

case ’+’:
i = 0;
j = 1;
scanf(InFormat, &i);
i &= FieldMask;
scanf(InFormat, &j);
j &= FieldMask;
printf("∗∗ add: ");
printf(OutFormat, i);
printf(" + ");
printf(OutFormat, j);
printf(" = ");
printf(OutFormat, (i ^ j));
printf("\n");
break;

case ’t’: /∗ for testing ∗/
new_reinit_agreed();
break;

case ’q’:
return 0;

default:
printf("%s",menu);
break;

}
if (rv == Inconsistent)

printf("Warning: system INCONSISTENT!\n");
printf("> ");

}

return 0;
}

161

fieldarith.h

/∗
fieldarith.h

version: 2013 Jan 22

∗∗ AES block cipher version

representation of fields:

"A" poly basis in 2^8 : A^8+A^4+A^3+A+1 = 0

"alpha" poly basis in 2^4 : a^4+a+1 = 0

"Omega" poly basis in 2^2 : w^2+w+1 = 0

∗/

/∗ field multiplication done through lookup logs, add logs, lookup antilog

to avoid doing modulo (q−1) the antilog table is doubled

to avoid testing for zero, log(0) = infinity (really 2q−1)

so need to pad end of antilog table with zeros up to 3q−3, also at 4q−2

here, rounded up size of tables for alignment reasons

Note: below embed smaller antilog tables in unused portion of bigger ones

Warning: in macros below, inversion or division by zero gives wrong answer,

as does zero to a power

∗/

#define fmul(x,y) (ALog[Log[x]+Log[y]]) /∗ field x∗y ∗/
#define finv(x) (ALog[FieldMask−Log[x]]) /∗ field 1/x (x != 0) ∗/
#define fdiv(x,y) (ALog[Log[x]+FieldMask−Log[y]]) /∗ field x/y (y != 0) ∗/
#define fpow(x,y) (ALog[(Log[x]∗(y)) % FieldMask +FieldMask]) /∗ (field x)^(integer y) ∗/

const Elem ∗ALog;
const int ∗Log;

const Elem ALogs[1024] = {
0x01,0x03,0x05,0x0F,0x11,0x33,0x55,0xFF,0x1A,0x2E,0x72,0x96,0xA1,0xF8,0x13,0x35,
0x5F,0xE1,0x38,0x48,0xD8,0x73,0x95,0xA4,0xF7,0x02,0x06,0x0A,0x1E,0x22,0x66,0xAA,
0xE5,0x34,0x5C,0xE4,0x37,0x59,0xEB,0x26,0x6A,0xBE,0xD9,0x70,0x90,0xAB,0xE6,0x31,

162

0x53,0xF5,0x04,0x0C,0x14,0x3C,0x44,0xCC,0x4F,0xD1,0x68,0xB8,0xD3,0x6E,0xB2,0xCD
,

0x4C,0xD4,0x67,0xA9,0xE0,0x3B,0x4D,0xD7,0x62,0xA6,0xF1,0x08,0x18,0x28,0x78,0x88,
0x83,0x9E,0xB9,0xD0,0x6B,0xBD,0xDC,0x7F,0x81,0x98,0xB3,0xCE,0x49,0xDB,0x76,0

x9A,
0xB5,0xC4,0x57,0xF9,0x10,0x30,0x50,0xF0,0x0B,0x1D,0x27,0x69,0xBB,0xD6,0x61,0xA3,
0xFE,0x19,0x2B,0x7D,0x87,0x92,0xAD,0xEC,0x2F,0x71,0x93,0xAE,0xE9,0x20,0x60,0xA0

,
0xFB,0x16,0x3A,0x4E,0xD2,0x6D,0xB7,0xC2,0x5D,0xE7,0x32,0x56,0xFA,0x15,0x3F,0x41,
0xC3,0x5E,0xE2,0x3D,0x47,0xC9,0x40,0xC0,0x5B,0xED,0x2C,0x74,0x9C,0xBF,0xDA,0

x75,
0x9F,0xBA,0xD5,0x64,0xAC,0xEF,0x2A,0x7E,0x82,0x9D,0xBC,0xDF,0x7A,0x8E,0x89,0

x80,
0x9B,0xB6,0xC1,0x58,0xE8,0x23,0x65,0xAF,0xEA,0x25,0x6F,0xB1,0xC8,0x43,0xC5,0x54,
0xFC,0x1F,0x21,0x63,0xA5,0xF4,0x07,0x09,0x1B,0x2D,0x77,0x99,0xB0,0xCB,0x46,0xCA,
0x45,0xCF,0x4A,0xDE,0x79,0x8B,0x86,0x91,0xA8,0xE3,0x3E,0x42,0xC6,0x51,0xF3,0x0E,
0x12,0x36,0x5A,0xEE,0x29,0x7B,0x8D,0x8C,0x8F,0x8A,0x85,0x94,0xA7,0xF2,0x0D,0x17,
0x39,0x4B,0xDD,0x7C,0x84,0x97,0xA2,0xFD,0x1C,0x24,0x6C,0xB4,0xC7,0x52,0xF6,
0x01,0x03,0x05,0x0F,0x11,0x33,0x55,0xFF,0x1A,0x2E,0x72,0x96,0xA1,0xF8,0x13,0x35,
0x5F,0xE1,0x38,0x48,0xD8,0x73,0x95,0xA4,0xF7,0x02,0x06,0x0A,0x1E,0x22,0x66,0xAA,
0xE5,0x34,0x5C,0xE4,0x37,0x59,0xEB,0x26,0x6A,0xBE,0xD9,0x70,0x90,0xAB,0xE6,0x31,
0x53,0xF5,0x04,0x0C,0x14,0x3C,0x44,0xCC,0x4F,0xD1,0x68,0xB8,0xD3,0x6E,0xB2,0xCD

,
0x4C,0xD4,0x67,0xA9,0xE0,0x3B,0x4D,0xD7,0x62,0xA6,0xF1,0x08,0x18,0x28,0x78,0x88,
0x83,0x9E,0xB9,0xD0,0x6B,0xBD,0xDC,0x7F,0x81,0x98,0xB3,0xCE,0x49,0xDB,0x76,0

x9A,
0xB5,0xC4,0x57,0xF9,0x10,0x30,0x50,0xF0,0x0B,0x1D,0x27,0x69,0xBB,0xD6,0x61,0xA3,
0xFE,0x19,0x2B,0x7D,0x87,0x92,0xAD,0xEC,0x2F,0x71,0x93,0xAE,0xE9,0x20,0x60,0xA0

,
0xFB,0x16,0x3A,0x4E,0xD2,0x6D,0xB7,0xC2,0x5D,0xE7,0x32,0x56,0xFA,0x15,0x3F,0x41,
0xC3,0x5E,0xE2,0x3D,0x47,0xC9,0x40,0xC0,0x5B,0xED,0x2C,0x74,0x9C,0xBF,0xDA,0

x75,
0x9F,0xBA,0xD5,0x64,0xAC,0xEF,0x2A,0x7E,0x82,0x9D,0xBC,0xDF,0x7A,0x8E,0x89,0

x80,

163

0x9B,0xB6,0xC1,0x58,0xE8,0x23,0x65,0xAF,0xEA,0x25,0x6F,0xB1,0xC8,0x43,0xC5,0x54,
0xFC,0x1F,0x21,0x63,0xA5,0xF4,0x07,0x09,0x1B,0x2D,0x77,0x99,0xB0,0xCB,0x46,0xCA,
0x45,0xCF,0x4A,0xDE,0x79,0x8B,0x86,0x91,0xA8,0xE3,0x3E,0x42,0xC6,0x51,0xF3,0x0E,
0x12,0x36,0x5A,0xEE,0x29,0x7B,0x8D,0x8C,0x8F,0x8A,0x85,0x94,0xA7,0xF2,0x0D,0x17,
0x39,0x4B,0xDD,0x7C,0x84,0x97,0xA2,0xFD,0x1C,0x24,0x6C,0xB4,0xC7,0x52,0xF6, 0,0,
0,
0,
0,
0,
0,
0,
0,
0,
1, 2, 4, 8, 3, 6, 12, 11, 5, 10, 7, 14, 15, 13, 9, /∗ ALog4 = ALogs+3∗256 ∗/
1, 2, 4, 8, 3, 6, 12, 11, 5, 10, 7, 14, 15, 13, 9, 0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1, 2, 3, /∗ ALog2 = ALogs+3∗256+3∗16 ∗/
1, 2, 3, 0,0,
0,0,0,0,
1, /∗ ALog1 = ALogs+3∗256+3∗16+3∗4 ∗/
1, 0,0,
/∗0,0,0,0, ∗/
0,
0,
0,
0,
0,
0,
};

const int Log8[256] = {
511, 0x00,0x19,0x01,0x32,0x02,0x1A,0xC6,0x4B,0xC7,0x1B,0x68,0x33,0xEE,0xDF,0x03,
0x64,0x04,0xE0,0x0E,0x34,0x8D,0x81,0xEF,0x4C,0x71,0x08,0xC8,0xF8,0x69,0x1C,0xC1,

164

0x7D,0xC2,0x1D,0xB5,0xF9,0xB9,0x27,0x6A,0x4D,0xE4,0xA6,0x72,0x9A,0xC9,0x09,0x78
,

0x65,0x2F,0x8A,0x05,0x21,0x0F,0xE1,0x24,0x12,0xF0,0x82,0x45,0x35,0x93,0xDA,0x8E,
0x96,0x8F,0xDB,0xBD,0x36,0xD0,0xCE,0x94,0x13,0x5C,0xD2,0xF1,0x40,0x46,0x83,0x38,
0x66,0xDD,0xFD,0x30,0xBF,0x06,0x8B,0x62,0xB3,0x25,0xE2,0x98,0x22,0x88,0x91,0x10,
0x7E,0x6E,0x48,0xC3,0xA3,0xB6,0x1E,0x42,0x3A,0x6B,0x28,0x54,0xFA,0x85,0x3D,0xBA

,
0x2B,0x79,0x0A,0x15,0x9B,0x9F,0x5E,0xCA,0x4E,0xD4,0xAC,0xE5,0xF3,0x73,0xA7,0x57

,
0xAF,0x58,0xA8,0x50,0xF4,0xEA,0xD6,0x74,0x4F,0xAE,0xE9,0xD5,0xE7,0xE6,0xAD,0

xE8,
0x2C,0xD7,0x75,0x7A,0xEB,0x16,0x0B,0xF5,0x59,0xCB,0x5F,0xB0,0x9C,0xA9,0x51,0

xA0,
0x7F,0x0C,0xF6,0x6F,0x17,0xC4,0x49,0xEC,0xD8,0x43,0x1F,0x2D,0xA4,0x76,0x7B,0xB7,
0xCC,0xBB,0x3E,0x5A,0xFB,0x60,0xB1,0x86,0x3B,0x52,0xA1,0x6C,0xAA,0x55,0x29,0

x9D,
0x97,0xB2,0x87,0x90,0x61,0xBE,0xDC,0xFC,0xBC,0x95,0xCF,0xCD,0x37,0x3F,0x5B,0

xD1,
0x53,0x39,0x84,0x3C,0x41,0xA2,0x6D,0x47,0x14,0x2A,0x9E,0x5D,0x56,0xF2,0xD3,0xAB,
0x44,0x11,0x92,0xD9,0x23,0x20,0x2E,0x89,0xB4,0x7C,0xB8,0x26,0x77,0x99,0xE3,0xA5,
0x67,0x4A,0xED,0xDE,0xC5,0x31,0xFE,0x18,0x0D,0x63,0x8C,0x80,0xC0,0xF7,0x70,0x07,
};

const int Log4[16] = {
31, 0, 1, 4, 2, 8, 5, 10, 3, 14, 9, 7, 6, 13, 11, 12,
};

const int Log2[4] = {
7, 0, 1, 2,
};

const int Log1[2] = {
3, 0,
};

165

newagree.h

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ New Agreeing ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗
version: 2013 Mar 22

Each call of new_agree_link introduces one more link into the Agreeing struct

if feasible, the number of consistent sets is calculated, without actually finding them

this works if each new link includes a new eq with the rhss giving all possible z values

(call this a "cover" eq since it covers the possibilities)

(the links may need to be re−ordered to achieve this condition for all)

then for any set of rhss of previous eqs, there is a rhs in the cover eq to sat the link

[note: the count assumes exactly one rhs per z val in the cover eq.]

if not, all consistent sets are found and counted (but not stored); call this MultiAgree

(this is computationally intensive but does not require lots of memory)

then if a rhs is not in any consistent set, it gets eliminated

except: a MultiAgree may be suppressed by a flag parameter

After the first MultiAgree, those links are called "agreed";

newly added links with a new cover eq will still allow the count without finding sets

∗/

//#define SHOWORDER // to see more details of process

#define NOSORT // can choose to skip sorting since there are n! permutations of n links

/∗ AgrLinkInfo is structure for info about a multilink ∗/
typedef struct {

int neqs; /∗ number of eqs in link ∗/
int firstnew; /∗ index of first cover eq ∗/
int eqend; /∗ index into Agr.eqlist beyond last eq ∗/
int ∗eqlist; /∗ sorted array of indices into Sys.E ∗/
int ∗leqlist; /∗ parallel array of indices into Link.eqlist ∗/

} AgrLinkInfo;

/∗ Agreeing is structure for agreed multilinks ∗/
typedef struct {

166

int nlinks; /∗ number of agreed links ∗/
int neqs; /∗ number of agreed MRHS equations ∗/
SetCtr nsets; /∗ estimated number of consistent sets ∗/
int nagreed; /∗ number of links actually multi−agreed ∗/
SetCtr nagreedsets; /∗ number of sets actually multi−agreed ∗/
int NotAgreed; /∗ skipped last multi−agree! ∗/
int maxlinks; /∗ max number of links allocated ∗/
int maxnrhs; /∗ max number of rhs of eqs ∗/
int ∗linklist; /∗ array of indices into Sys.L for links ∗/
int ∗eqlist; /∗ array of indices into Sys.E for eqs ∗/
int ∗eqidx; /∗ array of indices from Sys.E into Agr.eqlist ∗/
AgrLinkInfo ∗∗linfo; /∗ array of ptr−>info for ea link ∗/

} Agreeing;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Global Variables ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
Agreeing Agr; /∗ global var ∗/
void ∗gptr; /∗ global pointer for temporary uses

∗ (agree_link needs one) ∗/

int
CompareIdxs(const void ∗x, const void ∗y)
{

/∗ for sorting or searching array of indices into list of z values: gptr ∗/
Elem a, b, ∗z;
z = (Elem ∗) gptr;
a = z[∗((int ∗) x)];
b = z[∗((int ∗) y)];
return (a < b) ? −1 : (a > b) ? 1 : 0;

}

int
CompareIndices(const void ∗x, const void ∗y)
{

/∗ for sorting or searching array of indices into list (gptr) of integer values ∗/

167

int a, b, ∗z;
z = (int ∗) gptr;
a = z[∗((int ∗) x)];
b = z[∗((int ∗) y)];
return (a < b) ? −1 : (a > b) ? 1 : 0;

}

/∗ init_agreed initializes the Agreeing structure ∗/
void
new_init_agreed(void)
{

int i;

Agr.nlinks = Agr.neqs = Agr.nagreed = Agr.maxnrhs = Agr.NotAgreed = 0;
Agr.nsets = 0;
Agr.nagreedsets = 1;
Agr.maxlinks = S−>maxlinks;
Agr.linklist = (int ∗) malloc(S−>maxlinks ∗ sizeof(int)); /∗ room for all ∗/
Agr.eqlist = (int ∗) malloc(S−>neqs ∗ sizeof(int)); /∗ room for all ∗/
Agr.eqidx = (int ∗) malloc(S−>neqs ∗ sizeof(int)); /∗ room for all ∗/
Agr.linfo = (AgrLinkInfo ∗∗) malloc(S−>maxlinks ∗ sizeof(AgrLinkInfo∗)); /∗ none to

start ∗/
for(i=0;i<S−>neqs;i++) Agr.eqidx[i]=−1; /∗ none to start ∗/
return ;

}

/∗ reinit_agreed reinitializes the Agreeing structure ∗/
void
new_reinit_agreed(void)
{

int i;

for(i= Agr.nlinks−1; i>=0; i−−) {
free(Agr.linfo[i]−>eqlist);

168

free(Agr.linfo[i]);
}
for(i=0;i<S−>neqs;i++) Agr.eqidx[i]=−1; /∗ none to start ∗/
Agr.nlinks = Agr.neqs = Agr.nagreed = Agr.maxnrhs = 0;
Agr.nsets = 0;
Agr.nagreedsets = 1;
return ;

}

/∗
nextperm generates next permutation of list l[n] of integers

assume start with l in increasing order

returns index to first changed position

after last permutation, returns −1, and l is back in incr order

(Note: got this algorithm from Wikipedia, sez can handle repeated values)

∗/
int nextperm(int n, int l[])
{

int i,j,k,t;
for (j=n−2; j >= 0 && l[j] >= l[j+1]; j−−); // 1st change posn

if (j>=0) { // not last permutation

for (k=n−1; l[j] >= l[k]; k−−); // smallest larger replacement

t=l[j]; l[j]=l[k]; l[k]=t; // swap

}
for (i=1; j+i < n−i; i++) // reverse rest of list

{t=l[j+i]; l[j+i]=l[n−i]; l[n−i]=t;} // swap

return j; // −1 if was already last permutation; back in order

}

/∗
To agree a new link:

if at least one new eq in new link, OK, can estimate # sets

if no new, try to re−order links so each has new eq

then if reordering works, OK

169

if ordering fails, then need to find all consistent sets for accurate count

∗/

/∗ new_agree_link incorporates new link into agreeing struct ∗/
/∗ NOTE: ONLY WORKS IF LINK HAS DIMENSION 1 (like old "small link")

BUT: with ability to SkipAgree, can effect higher dimension 1 row at a time

SO: no longer need to even consider links of higher dimension ∗/
Status // OK, Fail, Inconsistent, Changed

new_agree_link(Link ∗ link, int SkipAgree) // SkipAgree suppresses Multi−Agree link

{
int i, j, k, n, t, ieq, eqn, linkn;
int nlinks2chk, neqs2chk ;
int nnew, reordered=0;
int ∗linkperm, ∗eqperm, ∗peqend, ∗peqidx, ∗l, ∗ll;
AgrLinkInfo ∗∗li, ∗lip;
Status stat = OK;

linkn = link − S−>L;
// check here if already agreed

for (i=0; i<Agr.nlinks; i++) if (Agr.linklist[i]==linkn) return OK;
// info for new link. n link idx; k #eqs; j idx to eqlist; l eqlist; ll leqlist

k = link−>neqs;
n = Agr.nlinks;
Agr.linklist[n] = linkn;
lip = Agr.linfo[n] = (AgrLinkInfo ∗) malloc(sizeof(AgrLinkInfo)); /∗ new info struct ∗/
l = lip−>eqlist = (int ∗) malloc(k∗2 ∗ sizeof(int));
ll = lip−>leqlist = lip−>eqlist + k;

// scan for new eqs in 2 stages, to store new non−cover eqs 1st, cover last

j = Agr.neqs; // to index new eqs

for (nnew=ieq=0; ieq < k; ieq++) {
eqn = link−>eqlist[ieq]; /∗ eq number ∗/
i = Agr.eqidx[eqn]; // index

if (i < 0) { // then new (−1 is flag)

nnew++; // count new

170

if (link−>Z[ieq][0][S−>E[eqn].nrhs] < FieldMask) { // if non−cover

i = j++; // save new index (do covers later)

Agr.eqidx[eqn] = i;
Agr.eqlist[i] = eqn ; // new eq in list

}
if (Agr.maxnrhs < S−>E[eqn].nrhs) Agr.maxnrhs = S−>E[eqn].nrhs; // track max

}
l[ieq] = i; // save index to Agr.eqlist

ll[ieq] = ieq; // save index to L.eq

}
for (ieq=0; ieq < k; ieq++) { // scan again for any new, cover eqs

eqn = link−>eqlist[ieq]; /∗ eq number ∗/
i = Agr.eqidx[eqn]; // index

if (i < 0) { // then still new (cover)

i = j++; // save new index

Agr.eqidx[eqn] = i;
Agr.eqlist[i] = eqn ; // new eq in list

l[ieq] = i; // save index to Agr.eqlist

}
}
// sort link eqs to Agr.eqlist order

// note: here leqidx is 0,1,..(k−1), so gives index into eqidx, so sort works

gptr = l; /∗ eqidx is array of indices for qsort of leqidx ∗/
qsort((void ∗) ll, (size_t) k, sizeof(int), CompareIndices); /∗ sort indices ∗/
for (j=0; j < k; j++) // use leqidx to reorder eqidx

l[j] = Agr.eqidx[link−>eqlist[ll[j]]];
lip−>neqs = k;
lip−>eqend = l[k−1]+1; // beyond last eq

lip−>firstnew = k−nnew;
Agr.neqs += nnew;
Agr.nlinks++;

#ifdef SHOWORDER
fprintf(stderr, " link #%d; eqs (%d new):", linkn, nnew);
for (ieq=0; ieq < k; ieq++)

171

fprintf(stderr, " %d [%d]{%d}", Agr.eqlist[l[ieq]], l[ieq], ll[ieq]);
fprintf(stderr, "\n");

#endif

/∗
find out whether can just count sets without constructing them...

don’t need to construct provided:

each successive link has new eq

if new link has new eq, it is in order, OK!

else may be way to re−order links that works; try all permutations if nec.

start w current order, mostly works.

seek spot to insert new link so it has new eq,

then iterate: check order; new permutation; until works or none left

∗/

if(nnew) { // have new eq; OK

#ifdef SHOWORDER
j = lip−>firstnew; ieq = l[j]; eqn = Agr.eqlist[ieq];
fprintf(stderr, " new link in order; have new eq %d %d{%d}\n",eqn,ieq,j,ll

[j]);
#endif

if(Agr.nlinks==1) Agr.nsets=1;
i = Agr.nlinks−1; // setup for count

goto done;
}

// at this point, have no new eq; setup to re−order

/∗
linkperm: indices into linklist, in trial order ([−1]=−1)

peqend: indexed as linklist; end of eq perm for link ([−1]=0)

eqperm: indices into eqlist, in link order

peqidx: indexed as eqlist; indices into eqperm (=−1 to flag new)

make new permutation of link order (up to first link that didn’t work)

flag eqs as new (just flag those that were "old" last time)

172

see if new cover for each link

∗/
n=Agr.nlinks;
k=Agr.neqs;
linkperm = ((int ∗) malloc(((n+1+k)∗2) ∗ sizeof(int))) +1;
l = (int ∗) malloc(((k>n)?k:n) ∗ sizeof(int)); // max for list length

li = (AgrLinkInfo ∗∗) malloc(n ∗ sizeof(AgrLinkInfo∗)); /∗ for copy ∗/
peqend = linkperm+n+1;
eqperm = peqend+n;
peqidx = eqperm+k;
linkperm[−1]=−1; // for convenience

peqend[−1]=0; // for convenience

for (i=0;i<n;i++) {linkperm[i]=i; peqend[i]=Agr.linfo[i]−>eqend;}
for (i=0;i<k;i++) eqperm[i]=peqidx[i]=i;

if(Agr.nagreed && Agr.linfo[Agr.nlinks−1]−>eqend <= Agr.linfo[Agr.nagreed−1]−>
eqend) {

// cannot estimate count: new link has only previously agreed eqs

reordered = 0; // re−order won’t work

#ifdef SHOWORDER
fprintf(stderr, " new link has no unagreed eq; skip resort\n");

#endif
goto MultiAgree; // to prepare to agree

}

#ifndef NOSORT // can choose to skip sorting since there are n! permutations of n links

{
SetCtr didperms = 0; // diagnostic info

linkperm += Agr.nagreed; // skip over previously agreed links

n −= Agr.nagreed;
reordered = 1;
eqn = Agr.neqs; // number of "old" eqs

i=n−1; // i+1 is number of indices to permute

do {

173

k = nextperm(++i,linkperm); // k idx of first change

didperms++;
if (k < 0) {reordered = 0;break;} // if nothing worked

// check if this order works

t = eqn; // prev end of old eqs

eqn = peqend[linkperm[k−1]]; // beyond here unsorted

for (i= eqn; i< t; i++) peqidx[eqperm[i]]=−1; // flag as "new"

for (i= k; i< n; i++) { // check each re−ordered link

linkn = linkperm[i];
for (j=t=nnew=0; j<Agr.linfo[linkn]−>neqs; j++) { // each eq

ieq = Agr.linfo[linkn]−>eqlist[j];
if (peqidx[ieq] < 0) { // if new

t = peqidx[ieq] = eqn; // add to end of list

eqperm[eqn++] = ieq;
nnew++;

}
else if (t < peqidx[ieq]) t = peqidx[ieq]; // track end

}
if (!nnew) break; // no new cover for i, next permutation

peqend[linkn] = t+1;
}

} while (i < n);
#if 1

fprintf(stderr,
" new link has no new eq; try RESORT: %lld permutations of %d links, %s\n

",
didperms, n, reordered ? "WORKED" : "DID NOT WORK");

#endif
linkperm −= Agr.nagreed; // shift back to include agreed links

n += Agr.nagreed; // so now nlinks

}
#endif

// done seeking new order

174

if (reordered) {
// here, found order that works; clean up...

#ifndef NOSORT // can choose to skip sorting, including this re−order of eqs

/∗
this would be the place to put new cover last if possible

for each reordered link, seek new eq with max # z vals,

then rotate eqperm accordingly to put that eq last for indexing

∗/
for (i=Agr.nagreed; i<n; i++){ // for each reordered link, in new order

linkn = Agr.linklist[linkperm[i]];
lip = Agr.linfo[linkperm[i]];
for (ieq = peqend[linkperm[i]]−1, t = 0, j = 0; j < lip−>neqs; j++)

if (peqidx[lip−>eqlist[j]] >= peqend[linkperm[i−1]] && // if new and more z vals

t <= S−>L[linkn].Z[lip−>leqlist[j]][0][S−>E[Agr.eqlist[lip−>eqlist[j]]].nrhs])
{

t = S−>L[linkn].Z[lip−>leqlist[j]][0][S−>E[Agr.eqlist[lip−>eqlist[j]]].nrhs];
ieq = peqidx[lip−>eqlist[j]]; // save idx into eqperm of max z vals

}
t = eqperm[ieq];
for (j = ieq; j < peqend[linkperm[i]]−1; j++) { // rotate new eqs

eqperm[j] = eqperm[j+1];
peqidx[eqperm[j]] = j;

}
eqperm[j] = t; // put eq w/ min z vals last

peqidx[eqperm[j]] = j;
}

#endif
// at this point, install current re−ordering, update set count

k = Agr.nagreed;
for (i=k; i<n; i++){ // copy links; permute eq #s

l[i] = Agr.linklist[i];
lip = li[i] = Agr.linfo[i];
lip−>eqend = peqend[i]; // new end

for (j=0; j< lip−>neqs; j++)

175

lip−>eqlist[j] = peqidx[lip−>eqlist[j]]; // new index for eq

}
for (i=k; i<n; i++){ // permute links

Agr.linklist[i] = l[linkperm[i]];
Agr.linfo[i] = li[linkperm[i]];

}
k = peqend[Agr.nagreed − 1];
for (i=k; i<Agr.neqs; i++){ // copy eqs; update idx

eqn = l[i] = Agr.eqlist[i];
Agr.eqidx[eqn] = peqidx[i]; // new index

}
for (i=k; i<Agr.neqs; i++) // permute eqs

Agr.eqlist[i] = l[eqperm[i]];
// this would be a good point to sort the eqlist of each link!!!

// now sort eq list of each link

gptr = l; /∗ make local array globally available for qsort ∗/
for (i=Agr.nagreed; i<n; i++){ // sort eq idx lists of resorted links

lip = Agr.linfo[i];
k = lip−>neqs;
for (j=0;j<k;j++) {

eqperm[j]=j; // idx list to sort

l[j]=lip−>eqlist[j]; // copy

peqidx[j]=lip−>leqlist[j];
}
qsort((void ∗) eqperm, (size_t) k, sizeof(int), CompareIndices); /∗ sort indices ∗/
for (j=0;j<k;j++) {

lip−>eqlist[j]=l[eqperm[j]]; // sort lists from copies

lip−>leqlist[j]=peqidx[eqperm[j]];
}

}
// at this point all is in order

}

else {

176

/∗
here, prepare to agree:

insert new link in order, based on current eqlist;

agree only necessary links; may have others with new cover at end.

order linfo−>eqlist increasing within each link

∗/
MultiAgree:

n = Agr.nlinks;
l[0] = Agr.linklist[n−1]; // copy new link to insert

li[0] = Agr.linfo[n−1];
eqn = Agr.linfo[n−1]−>eqend;
for (i=n−1; i>0 && Agr.linfo[i−1]−>eqend > eqn; i−−){ // find place for new link

Agr.linklist[i] = Agr.linklist[i−1]; // shift by one

Agr.linfo[i] = Agr.linfo[i−1];
}
Agr.linklist[i] = l[0]; // insert new link

Agr.linfo[i] = li[0];
nnew = i; // position of new link

#ifndef NOSORT // can choose to skip sorting; below may adjust order of new link among

agreed

// check whether to put new link first

if (i && Agr.linfo[i−1]−>eqend == eqn) {
for (j=i−1; j>0 && Agr.linfo[j−1]−>eqend == eqn; j−−) ; // find first w/ same end

k = Agr.linfo[j]−>eqend − ((j)? Agr.linfo[j−1]−>eqend : 0); // # new eqs in link j

n = li[0]−>neqs;
for (t=1; t <= n && li[0]−>eqlist[n−t] == eqn−t; t++) ; t−−; // # in sequence

if (Agr.linfo[j]−>eqend == eqn && k>t) { // if j same end, more new

for (; i>j; i−−){ // put new link before j

Agr.linklist[i] = Agr.linklist[i−1]; // shift by one

Agr.linfo[i] = Agr.linfo[i−1];
}
Agr.linklist[i] = l[0]; // insert new link

Agr.linfo[i] = li[0];
nnew = i; // position of new link

177

/∗ at this point, old link i+1 has at least one eq "newer" than new link i

∗ so want to re−establish correct eq order: newer after older ∗/
// now need to renumber t eqs, reorder them

for (j=0;j<Agr.neqs;j++) eqperm[j]=peqidx[j]=j;
for (j=eqn−k; j < eqn; j++) peqidx[j]=−1; // mark new ones

for (i= 0, t=eqn−k; i< 2; i++) { // check both re−ordered links

lip = Agr.linfo[nnew+i];
for (j=0; j < lip−>neqs; j++) { // each eq

ieq = lip−>eqlist[j];
if (peqidx[ieq] < 0) { // if new

peqidx[ieq] = t; // add to end of list

eqperm[t++] = ieq;
lip−>eqend = t; // mark end of list

}
}

} // now have set permutation of k eqs.

// at this point, install current re−ordering

for (i=nnew; i<Agr.nlinks; i++){ // permute eq #s

lip = Agr.linfo[i];
for (j=0; j< lip−>neqs; j++)

lip−>eqlist[j] = peqidx[lip−>eqlist[j]]; // new index for eq

}
for (j=eqn−k; j < eqn; j++){ // copy eqs; update idx

ieq = l[j] = Agr.eqlist[j];
Agr.eqidx[ieq] = peqidx[j]; // new index

}
for (j=eqn−k; j < eqn; j++) // permute eqs

Agr.eqlist[j] = l[eqperm[j]];
// this would be a good point to sort the eqlist of each link to be agreed!!!

// now sort eq list of each link

gptr = l; /∗ make local array globally available for qsort ∗/
for (i=nnew; i<Agr.nlinks; i++){ // sort eq idx lists of resorted links

lip = Agr.linfo[i];
n = lip−>neqs;

178

for (j=0;j<n;j++) {
eqperm[j]=j; // idx list to sort

l[j]=lip−>eqlist[j]; // copy

peqidx[j]=lip−>leqlist[j];
}
qsort((void ∗) eqperm, (size_t) n, sizeof(int), CompareIndices); /∗ sort indices ∗/
for (j=0;j<n;j++) {

lip−>eqlist[j]=l[eqperm[j]]; // sort lists from copies

lip−>leqlist[j]=peqidx[eqperm[j]];
}

}
// at this point all is in order

}
}

#endif
// how many links to agree?

if (nnew <= Agr.nagreed) { // new link inserted in agreed

nlinks2chk = Agr.nagreed+1; // one more link for finding sets

neqs2chk = Agr.linfo[Agr.nagreed]−>eqend; // end of eqs to check for sets

}
else {

nlinks2chk = nnew+1; // end of links for finding sets

neqs2chk = Agr.linfo[nnew]−>eqend; // end of eqs to check for sets

}
}
free(li);
free(l);
free(linkperm − 1);

#ifdef SHOWORDER
fprintf(stderr," new links:");
for(i=0;i<Agr.nlinks;i++) { fprintf(stderr," %X(",Agr.linklist[i]);

for(j=0;j<Agr.linfo[i]−>neqs;j++) fprintf(stderr,"%X",Agr.linfo[i]−>eqlist[j]);
fprintf(stderr,",%X)",Agr.linfo[i]−>eqend); }

fprintf(stderr,"; eqs:");

179

for(i=0;i<Agr.neqs;i++) fprintf(stderr," %X[%X]",Agr.eqlist[i],Agr.eqidx[Agr.eqlist[i]]);
fprintf(stderr,"\n");

#else
fprintf(stderr," current links:");
for(i=0;i<Agr.nlinks;i++) fprintf(stderr," %d",Agr.linklist[i]);
fprintf(stderr,"; eqs:");
for(i=0;i<Agr.neqs;i++) fprintf(stderr," %d",Agr.eqlist[i]);
fprintf(stderr,"\n");

#endif

if (! reordered) {
fprintf(stderr," MultiAgree! \n");
if (SkipAgree) { // suppress Multi−Agree until next time

long long int g=1;
fprintf(stderr, " No: Let’s NOT and say we did! Guesstimate # of sets...\n");
Agr.NotAgreed = 1;
Agr.nagreed = nlinks2chk; // pretend agreed these links

Agr.nagreedsets = g << (Nbits∗(neqs2chk−nlinks2chk)); // should have fewer sets

} else
/∗
This is messy...

The main idea is to check that each combination of rhs of eqs satisfies each link

For each link that has new eqs, for last eq use z val to lookup rhs index

call this indexed eq (other type called variable eq), distinguish 2 cases:

if has some repeated z vals, may change idx satisfying link; track this

else just look up idx to rhs

Figure out next combo to try based on link that failed

I use a lot of lookup tables, hoping that is more efficient than recalculating

combo: list of indices of rhs for each eq (non−indexed eqs count down to 0)

needrhs: for each rhs of each eq, flag whether gets used in consistent set (to elim eqs)

eqlink: for each eq, index of first link that includes it

changeq: for each link, idx of eq to change if link fails (for next combo)

180

skipped: for each link, 0 or idx of last changeable eq (variable or rep−z) skipped by

changeq

preveq: for each eq, idx of previous eq to change (for next combo)

Zp: for each link, pointer to array of pointers to Z lists, one for each eq in link

idxd: for each eq, flag whether indexed (1, or −1 if repeated z vals) or not (0)

znum: for each indexed eq, for each z, either: rhs idx, or −1 if none, or −n−1 if n

repeated

rhsidx: for each repeated−z link, list of indices to rhs, sorted by increasing z val

zstart: for each repeated−z link, for each z, pointer into rhsidx to first for this z val

zp: for each repeated−z link, list of rhs for current z val

zrep: for each repeated−z link, remaining number of repeated current z vals

∗/
{

#include <time.h>
clock_t cstart, cfinish;
register int z, j, ae, il;
int ∗eqs, ∗eqsend, ∗lastrhs, ∗skipped, ∗∗∗zstart;
Elem ∗∗Z, ∗∗∗Zp;
int ∗∗needrhs, ∗idxd;
int ∗∗rhsidx, ∗∗znum, ∗∗lasteq, ∗combo;
int ∗eqlink, ∗preveq, ∗changeq, ∗zrep, ∗∗zp, zcnt[Field];
int row;
Elem ∗zl;
SetCtr didcombos, didlinks;

#ifdef SHOWORDER
fprintf(stderr,"to check %d links of %d eqs\n",nlinks2chk,neqs2chk);

#endif
// allocate & setup tables

combo = (int ∗) malloc(neqs2chk ∗ sizeof(int)); // test combo of rhs idx

needrhs = (int ∗∗) malloc(neqs2chk ∗ sizeof(int ∗));
for (i=0;i<neqs2chk;i++)

needrhs[i] = (int ∗) calloc(S−>E[Agr.eqlist[i]].nrhs, sizeof(int));
znum = (int ∗∗) malloc((nlinks2chk∗4) ∗ sizeof(int ∗));

181

rhsidx = znum + nlinks2chk;
zp = rhsidx + nlinks2chk;
lasteq = zp + nlinks2chk;
eqlink = (int ∗) malloc((neqs2chk∗4+nlinks2chk∗3+1) ∗ sizeof(int));
preveq = eqlink + neqs2chk;
idxd = preveq + neqs2chk;
lastrhs = idxd + neqs2chk;
skipped = lastrhs + neqs2chk;
zrep = skipped + nlinks2chk;
changeq = zrep + nlinks2chk; // changeq has one beyond end for convenience

Zp = (Elem ∗∗∗) malloc(nlinks2chk ∗ sizeof(Elem ∗∗));
for (n=il=0; il < nlinks2chk; il++) n += Agr.linfo[il]−>neqs; // tot num of Z lists

Z = (Elem ∗∗) malloc(n ∗ sizeof(Elem ∗));
zstart = (int ∗∗∗) malloc((nlinks2chk) ∗ sizeof(int ∗∗));
for (j = 0; j < nlinks2chk; j++) zstart[j] = NULL; // mostly not needed

ae = −1;
for (il=ieq=0; il < nlinks2chk; il++) { // relate eqs to links

linkn = Agr.linklist[il];
lip = Agr.linfo[il];
n = lip−>neqs; // for convenience

lasteq[il] = lip−>eqlist + n − 1 ; // ptr to penultimate eq, for convenience

Zp[il] = Z;
for (j=0; j<n; j++) {

(∗Z++) = S−>L[linkn].Z[lip−>leqlist[j]][0]; // list of z vals

}
znum[il] = NULL; // in case no index

for (;ieq< Agr.linfo[il]−>eqend;ieq++) { // each eq (count on ordering)

eqn = Agr.eqlist[ieq];
n = S−>E[eqn].nrhs;
lastrhs[ieq] = n−1; // idx to last

eqlink[ieq] = il;
preveq[ieq] = ae; // prev eq to change if cannot change this one

if (ieq+1==Agr.linfo[il]−>eqend) { // make index for last eq

182

idxd[ieq] = 1; // flag as indexed

zl = Z[−1]; // list of z vals

#ifdef SHOWORDER
fprintf(stderr,"setup link [%d]=%d, eq [%d]=%d, %d rhs\n Z:",il,linkn,ieq,

eqn,n);
for(j = 0; j <= n; j++)

fprintf(stderr," %X",zl[j]);
fprintf(stderr,"\n");

#endif
if(n−1−zl[n]) { // if more rhs than z vals, some zs must repeat

ae = ieq; // this eq may be changeable when z repeats

idxd[ieq] = −1; // flag as indexed w/ rep

zrep[il] = 0;
znum[il] = (int ∗) malloc((Field + n) ∗ sizeof(int));
rhsidx[il] = znum[il] + Field;
for (j=0;j<Field;j++) zcnt[j] = 0; // zero count

for (j=0;j<n;j++) {
zcnt[zl[j]]++; // count z vals

rhsidx[il][j] = j; // initialize idx list

}
gptr = zl; // global ptr for qsort

qsort((void ∗) rhsidx[il], (size_t) n, sizeof(int), CompareIdxs); /∗ sort indices

∗/
zstart[il] = (int ∗∗) malloc((Field) ∗ sizeof(int ∗));
zstart[il][0] = rhsidx[il];
for (j = 0; j < FieldMask; j++) /∗ accumulate #zs to idx rhsidx∗/

zstart[il][j+1] = zstart[il][j] + zcnt[j];
for (j=0;j<Field;j++)

znum[il][j] = (zcnt[j] == 1) ? zstart[il][j][0] : −(zcnt[j]+1);
#ifdef SHOWORDER

fprintf(stderr,"zn:");
for(j = 0; j < Field; j++)

fprintf(stderr," %d",znum[il][j]);
// fprintf(stderr,"; zs:");

183

// for(j = 0; j < Field; j++)

// fprintf(stderr," %d",(int)(zstart[il][j]−rhsidx[il]));

fprintf(stderr,"; ri:");
for(j = 0; j < n; j++)

fprintf(stderr," %d",rhsidx[il][j]);
fprintf(stderr,"\n");

#endif
}
else {

znum[il] = (int ∗) malloc((Field) ∗ sizeof(int));
for (j = 0; j < Field; j++) znum[il][j] = −1; // default sez none

for (j=0;j<n;j++)
znum[il][zl[j]] = j; // rhs idx for that z val

#ifdef SHOWORDER
fprintf(stderr,"zn:");
for(j = 0; j < Field; j++)

fprintf(stderr," %d",znum[il][j]);
fprintf(stderr,"\n");

#endif
}

} else {
ae = ieq; // this is a "variable" eq, not indexed

idxd[ieq] = 0;
}

}
/∗ seek changeq: eq to change if link fails (latest changeable eq that affects link)

k is a changeable eq that would affect link; i is eq to affect in link ∗/
n = lip−>neqs; // for convenience

for (k=0, j= (eqlink[ieq−1]==il) ? n−1 : n; j;) { // skip last eq in idxd link

i = lip−>eqlist[−−j]; // idx of eq (work backwards)

if (i <= k) break; // found max k

if (idxd[i]<=0) { k = i; break; } // this changeable eq is k

if (k < changeq[eqlink[i]]) k = changeq[eqlink[i]]; // current max

}

184

changeq[il] = k;
i = (eqlink[ieq−1]==il && ieq−1==ae) ? preveq[ae] : ae; // max changeable

skipped[il] = (i > k) ? i : 0; // note if skipped changeable eq

}
changeq[nlinks2chk] = ae; // beyond end, for convenience

#ifdef SHOWORDER
fprintf(stderr,"changeq[sk]:");
for(j = 0; j <= nlinks2chk; j++) {

fprintf(stderr," %d",changeq[j]);
if (j < nlinks2chk && skipped[j]) fprintf(stderr,"[%d]",skipped[j]); }

fprintf(stderr,"; preveq:");
for(j = 0; j < neqs2chk; j++)

fprintf(stderr," %d",preveq[j]);
fprintf(stderr,"\n");

#endif

/∗
The multiagree loop begins at checkcombo

use "spaghetti code" (using goto) for efficiency

∗/
cstart = clock();
for (ieq = changeq[nlinks2chk]; ieq >= 0; ieq = preveq[ieq]) // initialize combo

combo[ieq] = lastrhs[ieq]; // idx to rhs for eq; count down from end

didcombos = didlinks = 0;
Agr.nsets = 0;
ae = −1; // ae: combo agreed up to this eq idx

il = 0; // il: idx of link to check

// while (1) { // for ea combo [a combinatorially large number] (break at bottom)

// loop back to here using goto, not loop structure

checkcombo: // come back here to try next combo

didcombos++; // count combos for diagnostic

for (; il < nlinks2chk; il++) { // check each unagreed link

didlinks++; // count links checked for diagnostic

Z = Zp[il]; // set up to sum z vals

185

eqs = Agr.linfo[il]−>eqlist;
eqsend = lasteq[il];
for (z = 0; eqs < eqsend;) // for all but last eqn

z ^= (∗Z++)[combo[∗eqs++]]; // add up zs

eqn = ∗eqs;
if (ae < eqn) { // if last eqn idxd (new)

j = znum[il][z]; // look up index for this z

if (j >= 0) combo[eqn] = j; // valid rhs idx if not neg

else if (j == −1) goto checkskipped; // −1 flags no such z

else {
zrep[il] = j = −(j+2); // neg indicates repeated z vals (offset)

zp[il] = zstart[il][z]; // array for this z

combo[eqn] = zp[il][j]; // idx from last rep

}
}
else if (z != (∗Z)[combo[eqn]]) goto checkskipped; // if no match, link fails

ae = eqn; // combo agreed up to here so far

}
// at this point, have agreed set: count it; then go to next

Agr.nsets++;
for(j = 0; j < neqs2chk; j++)

needrhs[j][combo[j]] = 1; // keep track of which rhs are in sets

ieq = changeq[nlinks2chk]; // eq to change (last possible)

goto nextcombo; // did not skip any

checkskipped: // come here when a link fails

ieq = changeq[il]; // eq to change

if ((ae = skipped[il])) do { // if prev skipped over changes in combo, reset

if (idxd[ae]) zrep[eqlink[ae]] = 0;
else combo[ae] = lastrhs[ae];
ae = preveq[ae];

} while (ae > ieq);
nextcombo:

do { // find next combo, starting at ieq

il = eqlink[ieq];

186

if (idxd[ieq]) { // if indexed, then may be repeated zs

if (zrep[il]) { // if repeats remain for same z

combo[ieq] = zp[il][−−zrep[il]]; // try next

il++; // this link OK, on to next

ae = ieq;
goto checkcombo;

}
}
else // variable eq

if (combo[ieq]−−) { // if haven’t tried ’em all

ae = ieq−1; // try this one

goto checkcombo;
}
else // reset and back up

combo[ieq] = lastrhs[ieq];
ieq = preveq[ieq]; // back up to prev eq to change

} while (ieq >= 0); // while got another combo to check

// break; // tried all combos: done

// }

Agr.nagreed = nlinks2chk; // now agreed these links

Agr.nagreedsets = Agr.nsets; // now agreed these sets

Agr.NotAgreed = 0; // yes, we did the MultiAgree

cfinish = clock();
cfinish = (cfinish > cstart) ? (cfinish−cstart) : (cfinish+(ULONG_MAX − cstart));

#if 1 //def SHOWORDER

fprintf(stderr," Checked %lld links in %lld combos of rhs.", didlinks, didcombos
);

fprintf(stderr," (took %f seconds)\n", ((double)(cfinish))/ CLOCKS_PER_SEC);
#endif

// all done finding sets. figure out whether can elim any rhs!

ll = (int ∗) malloc(Agr.maxnrhs ∗ sizeof(int)); // for rhs permutation

for (ieq=0;ieq<neqs2chk;ieq++) { // each eq

eqn = Agr.eqlist[ieq];

187

n = S−>E[eqn].nrhs;
#ifdef SHOWORDER

fprintf(stderr," eq[%d] = %d w %d rhs; need:", ieq, eqn, n);
for(j = 0; j < n; j++)

needrhs[ieq][j] ? fprintf(stderr,"%2X",j) : fprintf(stderr," .");
fprintf(stderr,"\n");

#endif
for(j = n−1; j >= 0 && needrhs[ieq][j]; j−−); // check if need all (find first not

needed)

if (j >= 0) { // can elim some rhs

// set up to remove rhs: use index permutation to reorder; for each link count z vals

for(k = 0; k < n; k++) // identity permutation to start

ll[k] = k;
k−−; // k is last rhs

for(; j >= 0; j−−) // permute indices

if (! needrhs[ieq][j]) {
if (j < k)
{ t = ll[j]; ll[j] = ll[k]; ll[k] = t; } // swap

k−−;
}

k++; // k is new # rhs

fprintf(stderr,"! eq%3d can elim %3d rhs (keep %3d)!\n", eqn, n−k, k);
#ifdef SHOWORDER

fprintf(stderr," new order:");
for(j = 0; j < n; j++)

fprintf(stderr," %X",ll[j]);
fprintf(stderr,"\n");

#endif
#ifndef SAVERHS // can opt not to eliminate RHSs for experimental purposes

stat = Changed;
for(j = k; j < n; j++) // free rest

free(S−>E[eqn].B[ll[j]]);
for(j = 0; j < k; j++) // permute rhs

S−>E[eqn].B[j] = S−>E[eqn].B[ll[j]];

188

S−>E[eqn].nrhs = k;
for(il = 0; il < S−>E[eqn].nlinks; il++) { // permute Z arrays

linkn = S−>E[eqn].linklist[il];
for (i=0; i < S−>L[linkn].neqs && S−>L[linkn].eqlist[i] != eqn; i++); //

DANGER if corrupted!!

if (i == S−>L[linkn].neqs){
fprintf(stderr,"DID NOT FIND EQ %d in link %d!\n", eqn, linkn);
return Fail; }

for (row=0; row < S−>L[linkn].dim; row++) {
for(j = 0; j < Field; j++) zcnt[j]=0; // to count z

for(t=j = 0; j < k; j++) { // permute Z row (in place)

z = S−>L[linkn].Z[i][row][j] = S−>L[linkn].Z[i][row][ll[j]];
if (! zcnt[z]++) t++; // count new z vals

}
S−>L[linkn].Z[i][row][k] = t−1; // save # z vals (offset −1)

}
}

#endif
}

}

// free up allocated spaces

free(ll);
for (i=nlinks2chk; i;)
{ free(zstart[−−i]); free(znum[i]); }
free(zstart);
free(Zp[0]);
free(Zp);
free(eqlink);
free(znum);
for (i=neqs2chk; i;)

free(needrhs[−−i]);
free(needrhs);
free(combo); // test combo of rhs idx

189

}
}
// calc # sets from agreed and remaining new links

Agr.nsets = Agr.nagreedsets;
i=Agr.nagreed;

done: // jump here if new link has new eq, with i = nlinks − 1

for (; i<Agr.nlinks; i++) {
k = i ? Agr.linfo[i−1]−>eqend : 0; // 1st new eq

lip = Agr.linfo[i];
n = lip−>eqend − 1; // last new eq

if (n == k) continue;
for (j=0; j < lip−>neqs; j++) { // for new eqs except last, mult by #rhs

ieq=lip−>eqlist[j];
if (ieq >= k && ieq < n)

Agr.nsets ∗= S−>E[Agr.eqlist[ieq]].nrhs; //

}
}
printf("new: %3d links, agreed %d eqs for %lld sets%s\n", Agr.nlinks, Agr.neqs, Agr

.nsets,
Agr.NotAgreed ? " (approx.)" : "");

return stat;
}

/∗
FindSets should only get called from WriteSolns,

which should only get called after last MultiAgree

so we assume eqs in Agr.eqlist are ordered to incr w/ links

∗/
void
FindSets(RhsIdx ∗∗C, int nsets)
{

int i, j, il, eqn, leqn, agreed, chgeq;

190

int nlinks, neqs, sets;
int ∗combo;
Elem z;

neqs = Agr.neqs; nlinks = Agr.nlinks;
combo = (int ∗) malloc(neqs ∗ sizeof(int)); // to test combo of rhs idx

/∗ ASSUME: just did final multi−agree, ALL links in order, ALL eqs in order ∗/
for (i=0; i < neqs; i++) { // initialize combo

eqn = Agr.eqlist[i];
combo[i] = S−>E[eqn].nrhs − 1; // count down from end

}
/∗
want eqs in link order so can tell first link to check

il: idx of link to check

∗/
sets = 0;
chgeq = −1; // all new combo

do { // for ea combo

for (il = 0; il < nlinks && Agr.linfo[il]−>eqend <= chgeq; il++); // skip OK links (no

change)

for (agreed = 1; il < nlinks; il++) { // check affected links

// consistency check, just add up zs

for (z=j=0;j< Agr.linfo[il]−>neqs; j++) { // add up zs

eqn = Agr.linfo[il]−>eqlist[j];
leqn = Agr.linfo[il]−>leqlist[j];
z ^= S−>L[Agr.linklist[il]].Z[leqn][0][combo[eqn]];

}
if (z) { // failed this link

chgeq = eqn; // (last)

agreed = 0; // flag no go

break; // go to next combo

}
}
// at this point, if agreed, save set; then go to next

191

if (agreed) {
if (sets >= nsets) {

fprintf(stderr, " Found too many sets: %d > %d\n", ++sets, nsets);
}
else {

for (i=0; i<neqs; i++)
C[Agr.eqlist[i]][sets] = combo[i]; // C indexed like Sys.E

sets++;
}
chgeq = neqs−1; // (last)

}
/∗
now need to figure out which combo to try next...

if more rhs to try for current eq, try one

else, reset this eq and back up to prev eq

∗/
for (; chgeq>=0 && !(combo[chgeq]−−); chgeq−−) // if back up, reset eqs

combo[chgeq] = S−>E[Agr.eqlist[chgeq]].nrhs − 1;
} while (chgeq>=0); // while got another combo to check

if (sets < nsets) {
fprintf(stderr, " Found too few sets: %d < %d\n", sets, nsets);

}
free(combo);

}

int
JordanForm(Mat X, int nrows, int ncols)
{

/∗ take row−reduced matrix of full rank with unit pivots, do back substitution ∗/
int r, c, p, pc, rv;
const Elem ∗SclTab;

for (p = nrows − 1; p > 0; p−−) { /∗ sc is leading col of submatrix ∗/
/∗ find pivot ∗/

192

for (pc = p; pc < ncols; pc++)
if (X[p][pc])

break; /∗ found pivot ∗/
if (pc == ncols) { /∗ then done; rest is 0 ∗/

fprintf(stderr, " JordanForm matrix not full rank!\n");
return −1;

}
if (p == nrows − 1)

rv = pc;
/∗ clear column ∗/
for (r = 0; r < p; r++)

if (X[r][pc]) {
SclTab = ALog + Log[X[r][pc]];
for (c = pc; c < ncols; c++)

X[r][c] ^= SclTab[Log[X[p][c]]]; /∗ subtract pivot row ∗/
}

}
return rv;

}

/∗
WriteSolns should be called only after final multi−agree.

then it calls FindSets to determine consistent sets, put ’em in C matrix

makes big matrix system, solves by Gauss−Jordan reduction

∗/
void
WriteSolns(void)
{

/∗ writes solutions from agreed sets ∗/
int i, eqn, rank, row, col, brow, nrows, ncols, cut, nsets;
RhsIdx ∗∗C; /∗ agreed rhs: list for each eq in S ∗/
Mat Aug;

if (Agr.neqs != S−>neqs || Agr.nlinks != S−>nlinks) { /∗ not all agreed yet ∗/

193

fprintf(stderr, " Can’t compute solutions until all eqs & links agreed!\n");
return;

}
nsets = Agr.nsets; /∗ assume same as nagreedsets, small # ∗/
if (nsets <= 0) { /∗ no solutions ∗/

fprintf(stderr, " No (%d) sets agreed!\n", nsets);
return;

}
// first need to find the sets again! Store them in C

/∗ allocate space for consistent sets C: 1 row per eq ∗/
C = (RhsIdx ∗∗) malloc(S−>neqs ∗ sizeof(RhsIdx ∗)); /∗ none to start ∗/
for (i = 0; i < S−>neqs; i++)

C[i] = (RhsIdx ∗) malloc(nsets ∗ sizeof(RhsIdx));
FindSets(C,nsets); // recalculate consistent sets

for (i = nrows = 0; i < S−>neqs; i++)
nrows += S−>E[i].nrows;

ncols = Nvar + nsets;
/∗ allocate Aug Matrix ∗/
Aug = (Mat) malloc(nrows ∗ sizeof(Vec));
for (i = 0; i < nrows; i++)

Aug[i] = (Vec) malloc(ncols ∗ sizeof(Elem));
/∗ copy lin eqs into Aug ∗/
for (eqn = row = 0; eqn < S−>neqs; eqn++)

for (brow = 0; brow < S−>E[eqn].nrows; row++, brow++) {
for (col = 0; col < Nvar; col++)

Aug[row][col] = S−>E[eqn].A[brow][col];
for (i = 0; i < Agr.nsets; i++, col++)

Aug[row][col] = S−>E[eqn].B[C[eqn][i]][brow];
}

rank = ReduceMats(Aug, Aug, nrows, ncols, 0);
i = JordanForm(Aug, rank, ncols);

194

if (i > Nvar) { /∗ inconsistent! ∗/
fprintf(stderr, " Some set(s) inconsistent!\n");
return;

}
if (rank < Nvar) { /∗ free var! ∗/

fprintf(stderr, " Some var(s) free!\n");
return;

}
/∗ now have all solutions ∗/

cut = ((Nbits > 4) ? 32 : 64) − 1; /∗ line length = 64 for B ∗/
printf(" Got %lld solution%s:\n", Agr.nsets, Agr.nsets > 1 ? "s" : "");
/∗ write solns ∗/
for (i = 0; i < Agr.nsets; i++) {

for (row = 0; row < Nvar; row++) {
printf(OutFormat, Aug[row][Nvar + i]);
if ((row & cut) == cut)

printf("\n");
}
if (row & cut)

printf("\n");
}
for (i = 0; i < nrows; i++)

free(Aug[i]);
free(Aug);
for (i = 0; i < S−>neqs; i++)

free(C[i]);
free(C);

}

void
WriteAgreedLinks(Sys ∗ S)
{

/∗ writes CSV file of eqs in each link ∗/

195

FILE ∗fout;
Link ∗link;
int i,j,k,c,il,ie,neqs;
int ∗linkcol;

/∗ which cols of U go with which eqs? ∗/
neqs = Agr.nagreed ? Agr.linfo[Agr.nagreed−1]−>eqend : 0;
linkcol = (int ∗) malloc((neqs + 1) ∗ sizeof(int)); /∗ alloc linkcol ∗/

fout = fopen("agreedlinks.csv", "w");
for (j=0; j< neqs; j++)

fprintf(fout,",%d",Agr.eqlist[j]);
fprintf(fout, ",\n");
for (i=0; i<Agr.nagreed; i++) {

il = Agr.linklist[i];
fprintf(fout, "%d,", il);
link = S−>L + il;
for (j = k = 0; j < link−>neqs; j++) {

linkcol[j] = k;
k += S−>E[link−>eqlist[j]].nrows;

}
linkcol[j] = k; /∗ end, for later convenience ∗/
for (k=j=0; j < neqs; j++) {

if (k < Agr.linfo[i]−>neqs && j == Agr.linfo[i]−>eqlist[k]) {
ie = Agr.linfo[i]−>leqlist[k++];
for (c = linkcol[ie]; c < linkcol[ie+1]; c++)

fprintf(fout, OutFormat, link−>U[0][c]);
}
fprintf(fout,",");

}
for (k=0; k < Agr.linfo[i]−>neqs; k++)

fprintf(fout," %d", Agr.eqlist[Agr.linfo[i]−>eqlist[k]]);
fprintf(fout, "\n");

}

196

fclose(fout);
printf(" saved agreed link info to agreedlinks.csv\n");

}

newmrhs.h

/∗
Multiple Right−Hand Sides (MRHS) equations system solver

version: 2013 Feb 26

by D. Canright and. N Vanatta

Starting from scratch, but heavily influenced by code of H. Raddum

This one is for equations of field elements, not just bits. Each element fits in a byte.

Code mostly not optimized for speed. (exception: multi−agree)

∗/

/∗ #define SHOWMATRICES ∗/
#define ONEDIMLINKS

#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
#include <math.h>

/∗ define # of ints needed for given # of bytes ∗/
#if UINT_MAX == 255
#define INT_BITS 8
#define INT_BYTES 1
#define INT_BYTES_BITS 0
#elif UINT_MAX == 65535
#define INT_BITS 16
#define INT_BYTES 2
#define INT_BYTES_BITS 1
#elif UINT_MAX == 4294967295
#define INT_BITS 32

197

#define INT_BYTES 4
#define INT_BYTES_BITS 2
#elif UINT_MAX == 18446744073709551615
#define INT_BITS 64
#define INT_BYTES 8
#define INT_BYTES_BITS 3
#endif

#ifdef INT_BYTES_BITS
#define intlen(nbytes) (((nbytes) + INT_BYTES−1) >> INT_BYTES_BITS)
#else
#define intlen(nbytes) (((nbytes) + sizeof(int)−1)/sizeof(int))
#endif

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Define Types ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
typedef unsigned char Elem; /∗ field element ∗/
typedef Elem ∗Vec; /∗ vector ∗/
typedef Vec ∗Mat; /∗ matrix ∗/

/∗ NOTE: trying to keep index in a byte; OK for AES if no flag value ∗/
typedef unsigned char RhsIdx; /∗ index to RHS in MRHS eq ∗/
typedef unsigned long long SetCtr; /∗ count large number of sets ∗/

/∗ Eq is structure for MRHS equation ∗/
typedef struct {

int nrows; /∗ number of linear equations in A ∗/
int nrhs; /∗ number of RHS in B ∗/
int nlinks; /∗ number of links involving this Eq ∗/
int maxlinks; /∗ max number of links allocated to

∗ linklist ∗/
int ∗linklist; /∗ list of link indices ∗/
Mat A; /∗ linear part matrix ∗/
Mat B; /∗ array of RHS vectors ∗/

} Eq;

198

/∗ Link is structure for linear dependency among eqs ∗/
typedef struct {

int neqs; /∗ number of MRHS equations in link ∗/
int dim; /∗ number of rows in U ∗/
int ncols; /∗ length of each row of U ∗/
int ∗eqlist; /∗ array of indices to eqs ∗/
Mat U; /∗ linear dependence matrix ∗/
Mat ∗Z; /∗ matrix of z=Ub values for rhs b ∗/
/∗ NOTE: save of # of distinct z vals at end of each Z row ∗/

} Link;

/∗ Sys is structure for system of MRHS equations ∗/
typedef struct {

int neqs; /∗ number of MRHS equations in E ∗/
int nlinks; /∗ number of links in L ∗/
int maxlinks; /∗ max number of links allocated to L ∗/
Eq ∗E; /∗ array of MRHS equations ∗/
Eq ∗LE; /∗ pointer to linear equations for

∗ eliminated variables ∗/
Link ∗L; /∗ array of links ∗/

} Sys;

/∗ Status indicates possible results ∗/
typedef enum {

OK, Fail, Inconsistent, Changed /∗ flags for results ∗/
} Status;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Global Variables ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
int ARRAYLENGTH;
int Nvar, Nbits = 1, Field, FieldMask;
char ∗InFormat, ∗OutFormat;
Sys ∗S;

199

#ifdef SQUARE
#include "sqfieldarith.h" // log tables & macros

#else
#include "fieldarith.h" // log tables & macros

#endif

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ System Setup, I/O ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void
NewEquation(Eq ∗ eq, int nlinks)
{

/∗ allocates memory for eq ∗/
int i;

eq−>A = (Mat) malloc(eq−>nrows ∗ sizeof(Vec));
eq−>B = (Mat) malloc(eq−>nrhs ∗ sizeof(Vec));
for (i = 0; i < eq−>nrows; ++i) {

eq−>A[i] = (Vec) malloc(Nvar ∗ sizeof(Elem));
}
for (i = 0; i < eq−>nrhs; ++i) {

eq−>B[i] = (Vec) malloc(eq−>nrows ∗ sizeof(Elem));
}
eq−>linklist = (int ∗) malloc(nlinks ∗ sizeof(int));
eq−>maxlinks = nlinks;
eq−>nlinks = 0;

}

void
NewLE(Eq ∗ eq)
{

/∗ sets up new LE matrix;

allocates pointers for A, storage for B, enough to elim all vars ∗/
eq−>nrows = 0;
eq−>nrhs = 1;
eq−>A = (Mat) malloc(Nvar ∗ sizeof(Vec));

200

eq−>B = (Mat) malloc(sizeof(Vec));
eq−>B[0] = (Vec) malloc(Nvar ∗ sizeof(Elem));

}

Status
NewLink(Sys ∗ S, int neqs, int dim, int ncols, int ∗eqlist, Mat U)
{

/∗ allocates (most) storage for link

NOTE: calling routine must allocate & initialize eqlist & U before this call ∗/
void ∗p;
Link ∗link;
Eq ∗eq;
const Elem ∗SclTab;
int i, j, k, n, col, brow, more;
int nz, newz[256]; // to tally distinct z values

n = S−>nlinks;
if (n + 1 > S−>maxlinks) { /∗ need more room in L for links ∗/

more = S−>maxlinks; /∗ try for 100% more ∗/
while (more

&& (p = realloc((void ∗) S−>L, (S−>maxlinks + more) ∗ sizeof(Link))) ==
NULL)

more >>= 1;
if (!more)

return Fail;
S−>L = (Link ∗) p;
S−>maxlinks += more;

}
link = S−>L + n;
link−>neqs = neqs;
link−>dim = dim;
link−>ncols = ncols;
link−>eqlist = eqlist;
link−>U = U;

201

/∗ allocate Z matrix ∗/
link−>Z = (Mat ∗) malloc(neqs ∗ sizeof(Mat));
if (link−>Z == NULL)

return Fail;
for (i = 0; i < neqs; i++) {

eq = S−>E + eqlist[i];
link−>Z[i] = (Mat) malloc(dim ∗ sizeof(Vec));
if (link−>Z[i] == NULL)

return Fail;
for (j = 0; j < dim; j++) // one extra for count of z vals

link−>Z[i][j] = (Vec) calloc(eq−>nrhs + 1, sizeof(Elem));
}
if (link−>Z[i − 1][j − 1] == NULL)

return Fail;

/∗ calculate Z matrix ∗/
/∗ i: eq; j: row of U; col: col of U; brow: row of b; ∗/
for (i = col = 0; i < neqs; i++) {

eq = S−>E + eqlist[i];
for (brow = 0; brow < eq−>nrows; brow++, col++)

for (j = 0; j < dim; j++)
if (U[j][col]) {

SclTab = ALog + Log[U[j][col]];
for (k = 0; k < eq−>nrhs; k++)

link−>Z[i][j][k] ^= SclTab[Log[eq−>B[k][brow]]]; /∗ add part ∗/
}

}

/∗ count distinct z values ∗/
/∗ i: eq; j: row of U; k: rhs; ∗/
for (i = 0; i < neqs; i++) {

eq = S−>E + eqlist[i];
for (j = 0; j < dim; j++) {

for (k = 0; k < Field; k++) newz[k] = 1;

202

nz = −1; // bias to fit in char

for (k = 0; k < eq−>nrhs; k++)
if (newz[link−>Z[i][j][k]]) { nz++; newz[link−>Z[i][j][k]] = 0; } /∗ count distinct

∗/
link−>Z[i][j][k] = nz;

}
}

for (i = 0; i < neqs; i++) { /∗ inform eqs of link ∗/
eq = S−>E + eqlist[i];
if (eq−>nlinks + 1 >= eq−>maxlinks) { /∗ need more room ∗/

more = eq−>maxlinks / 2;
if ((p = realloc((void ∗) eq−>linklist, (eq−>maxlinks + more) ∗ sizeof(int))) == NULL

)
return Fail;

eq−>linklist = (int ∗) p;
eq−>maxlinks += more;

}
eq−>linklist[eq−>nlinks++] = n;

}
S−>nlinks++;
return OK;

}

void
NewSystem(Sys ∗ S)
{

S−>LE = (Eq ∗) malloc(sizeof(Eq));
NewLE(S−>LE);
S−>E = (Eq ∗) malloc(S−>neqs ∗ sizeof(Eq));
S−>nlinks = 0;
S−>maxlinks = (S−>neqs ∗ (S−>neqs − 1)) / 2; /∗ start with enough for all pairs ∗/
S−>L = (Link ∗) malloc(S−>maxlinks ∗ sizeof(Link));

}

203

Status
ReadEquation(Eq ∗ eq, FILE ∗ fp)
{

/∗ reads data for eq ∗/
int row, col;
unsigned int num;

/∗ read A by rows ∗/
for (row = 0; row < eq−>nrows; row++) {

for (col = 0; col < Nvar; col++) {
if (fscanf(fp, InFormat, &num) != 1) {

fprintf(stderr, "Error in readEquation: could not read A: row %d col %d\n",
row, col);

return Fail;
}
eq−>A[row][col] = num & FieldMask;

}
}
/∗ read b by cols ∗/
for (col = 0; col < eq−>nrhs; col++) {

for (row = 0; row < eq−>nrows; row++) {
if (fscanf(fp, InFormat, &num) != 1) {

fprintf(stderr, "Error in readEquation: could not read B: col %d row %d\n",
col, row);

return Fail;
}
eq−>B[col][row] = num & FieldMask;

}
}
return 0;

}

/∗ ReadSystem reads in the system of equations; expected format:

204

Nvar neqs nbits (all on one line; if nbits [# of bits] is missing, default is 1)

nrows nrhs A B (for each Eq)

∗/
#define LINELENGTH 128
Status
ReadSystem(Sys ∗ S, char ∗filename)
{

int i;
FILE ∗fp;
char line[LINELENGTH];

fp = fopen(filename, "r");
if (fp == NULL) {

fprintf(stderr, "Error in ReadSystem: could not open file %s\n", filename);
return Fail;

}
if (fgets(line, LINELENGTH − 2, fp) == NULL) {

fprintf(stderr, "Error in ReadSystem: could not read header of file %s\n", filename
);

return Fail;
}
if (sscanf(line, "%d%d%d", &Nvar, &S−>neqs, &Nbits) < 2) {

fprintf(stderr, "Error in ReadSystem: could not read Nvar and neqs\n");
return Fail;

}
if (Nvar < 1) {

fprintf(stderr, "Error in ReadSystem: bad param: Nvar = %d\n", Nvar);
return Fail;

}
if (S−>neqs < 1) {

fprintf(stderr, "Error in ReadSystem: bad param: S−>neqs = %d\n", S−>neqs);
return Fail;

}
InFormat = "%1x";

205

OutFormat = "%01X";
switch (Nbits) {

case 1:
Log = Log1;
ALog = ALogs + 3 ∗ 256 + 3 ∗ 16 + 3 ∗ 4;
Field = 2;
break;

case 2:
Log = Log2;
ALog = ALogs + 3 ∗ 256 + 3 ∗ 16;
Field = 4;
break;

case 4:
Log = Log4;
ALog = ALogs + 3 ∗ 256;
Field = 16;
break;

case 8:
Log = Log8;
ALog = ALogs;
Field = 256;
InFormat = "%2x";
OutFormat = "%02X";
break;

default:
fprintf(stderr, "Error in ReadSystem: bad param: Nbits = %d\n", Nbits);
return Fail;

}
FieldMask = Field − 1;

NewSystem(S);
for (i = 0; i < S−>neqs; ++i) {

if (fscanf(fp, "%d%d", &S−>E[i].nrows, &S−>E[i].nrhs) != 2) {

206

fprintf(stderr, "Error in ReadSystem: could not read nrows and nrhs for eq %d
\n", i);

return Fail;
}
if (S−>E[i].nrows < 1) {

fprintf(stderr, "Error in ReadSystem: bad param: S−>E[%d].nrows = %d\n",
i, S−>E[i].nrows);

return Fail;
}
if (S−>E[i].nrhs < 1) {

fprintf(stderr, "Error in ReadSystem: bad param: S−>E[%d].nrhs = %d\n",
i, S−>E[i].nrhs);

return Fail;
}
NewEquation(&S−>E[i], S−>neqs);
if (ReadEquation(&S−>E[i], fp)) {

fprintf(stderr, "Error in ReadSystem: did not get eq %d\n", i);
return Fail;

}
}
return OK;

}

void
WriteMatrix(Mat M, int nrows, int ncols, char ∗tag)
{

/∗ writes data for eq ∗/
int i, row, col, cut = −1;

printf(" %s[%dx%d]:\n", tag, nrows, ncols);
/∗ write M by rows ∗/
for (row = i = 0; row < nrows; row++) {

for (col = 0; col < ncols; col++) {
printf(OutFormat, M[row][col]);

207

if (!(++i & cut))
printf("\n");

}
if (i & cut)

printf("\n");
}

}

void
WriteEquation(Eq ∗ eq)
{

/∗ writes data for eq ∗/
int i, row, col, cut;

cut = ((Nbits > 4) ? 32 : 64) − 1; /∗ line length = 64 for B ∗/
printf(" %d %d\n", eq−>nrows, eq−>nrhs);
/∗ write A by rows ∗/
for (row = 0; row < eq−>nrows; row++) {

for (col = 0; col < Nvar; col++) {
printf(OutFormat, eq−>A[row][col]);

}
printf("\n");

}
/∗ write B by cols ∗/
for (col = i = 0; col < eq−>nrhs; col++) {

for (row = 0; row < eq−>nrows; row++) {
printf(OutFormat, eq−>B[col][row]);
if (!(++i & cut))

printf("\n");
}

}
if (i & cut)

printf("\n");
}

208

void
WriteLink(Link ∗ link)
{

/∗ writes data for link ∗/
int i, n;

printf(" link #");
n = (int) (link − S−>L); /∗ link number? ∗/
if (n < 0 || n >= S−>nlinks) {

printf(" %d ??", n); return;}
else

printf("%3d", n);
printf("; %d eqs:", link−>neqs);
for (i = 0; i < link−>neqs; i++)

printf(" %d", link−>eqlist[i]);
printf(";");
WriteMatrix(link−>U, link−>dim, link−>ncols, "U");

}

void
WriteLinkVars(Sys ∗ S)
{

/∗ writes CSV file of vars in each link ∗/
FILE ∗fout;
Link ∗link;
Eq ∗eq;
Vec linkvars;
int i, j,k,r,c,flag;
char ∗str[4] = { ",", ",.", ",x", ",∗" };

fout = fopen("linkvars.csv", "w");
linkvars = (Vec) calloc(Nvar, sizeof(Elem));
for (j=0; j<Nvar; j++) {

209

fprintf(fout,",%d",j);
}
fprintf(fout, "\n");
for (i=0; i<S−>nlinks; i++) {

fprintf(fout, "%d",i);
link = S−>L + i;
for (c=k=0; k < link−>neqs; k++) {

eq = S−>E + link−>eqlist[k];
for (r=0; r < eq−>nrows; r++, c++) {

flag = link−>U[0][c] ? 2 : 1 ;
for (j=0; j<Nvar; j++)

if (eq−>A[r][j]) linkvars[j] |= flag;
}

}
for (j=0; j<Nvar; j++) {

fprintf(fout,"%s",str[linkvars[j]]);
linkvars[j] = 0;

}
fprintf(fout, "\n");

}
fclose(fout);
printf(" saved link variable info to linkvars.csv\n");

}

void
WriteLinkEqs(Sys ∗ S)
{

/∗ writes CSV file of eqs in each link ∗/
FILE ∗fout;
Link ∗link;
Eq ∗eq;
int j,k,r,c,il,ie;

fout = fopen("linkeqs.csv", "w");

210

for (j=0; j< S−>neqs; j++)
fprintf(fout,",%d",j);

fprintf(fout, ",\n");
for (il=0; il<S−>nlinks; il++) {

fprintf(fout, "%d,",il);
link = S−>L + il;
for (c=k=ie=0; ie < S−>neqs; ie++) {

if (k < link−>neqs && ie == link−>eqlist[k]) {
eq = S−>E + link−>eqlist[k++];
for (r=0; r < eq−>nrows; r++)

fprintf(fout, OutFormat, link−>U[0][c++]);
}
fprintf(fout,",");

}
for (k=0; k < link−>neqs; k++)

fprintf(fout," %d", link−>eqlist[k]);
fprintf(fout, "\n");

}
fclose(fout);
printf(" saved link equation info to linkeqs.csv\n");

}

void
WriteSystem(Sys ∗ S)
{

/∗ writes data for system ∗/
int i;

printf(" %d %d %d\n", Nvar, S−>neqs, Nbits);
/∗ write eqs ∗/
for (i = 0; i < S−>neqs; i++)

WriteEquation(S−>E + i);
if (S−>LE−>nrows) {

printf(" linear eqs (%d):\n", S−>LE−>nrows);

211

WriteEquation(S−>LE);
}

}

void
EquationInfo(Sys ∗ S, int e)
{

/∗ writes info for eq ∗/
int i;

printf("Eq[%3d]:%3d rows,%3d rhs,%3d links",
e, S−>E[e].nrows, S−>E[e].nrhs, S−>E[e].nlinks);

for (i = 0; i < S−>E[e].nlinks; i++)
printf(" %d", S−>E[e].linklist[i]);

printf("\n");
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Solution Tools ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int
ReduceMats(Mat X, Mat Y, int nrows, int xcols, int ycols)
{

/∗ row reduce matrix X, same row ops on Y (if ycols != 0), return rank ∗/
int r, c, p, pr, pc, sc, maxcol;
const Elem ∗SclTab;
Vec tmp;

for (p = sc = 0; p < nrows; p++) { /∗ sc is leading col of submatrix ∗/
pc = xcols;
/∗ find pivot ∗/
for (r = p; r < nrows; r++) {

for (c = sc; c < pc && !X[r][c]; c++); /∗ find leading nonzero ∗/
if (c < pc) {

pc = c;

212

pr = r; /∗ current leader ∗/
if (c == sc)

break; /∗ found pivot ∗/
}

}
if (pc == xcols) /∗ then done; rest is 0 ∗/

break;
/∗ swap rows if nec ∗/
if (pr > p) { /∗ swap rows ∗/

tmp = X[p];
X[p] = X[pr];
X[pr] = tmp;
if (ycols) { /∗ so can reduce single matrix too ∗/

tmp = Y[p];
Y[p] = Y[pr];
Y[pr] = tmp;

}
}
/∗ normalize: want pivot = 1 (not really nec, but simpler) ∗/
for (maxcol = xcols; maxcol > pc && !X[p][maxcol − 1]; maxcol−−); /∗ row end ∗/
if (X[p][pc] != 1) {

SclTab = ALog + FieldMask − Log[X[p][pc]];
for (c = pc; c < maxcol; c++)

X[p][c] = SclTab[Log[X[p][c]]]; /∗ scale row ∗/
for (c = 0; c < ycols; c++)

Y[p][c] = SclTab[Log[Y[p][c]]]; /∗ scale row ∗/
}
/∗ clear column ∗/
for (r = p + 1; r < nrows; r++) {

if (X[r][pc]) {
SclTab = ALog + Log[X[r][pc]];
for (c = pc; c < maxcol; c++)

X[r][c] ^= SclTab[Log[X[p][c]]]; /∗ subtract pivot row ∗/
for (c = 0; c < ycols; c++)

213

Y[r][c] ^= SclTab[Log[Y[p][c]]]; /∗ subtract pivot row ∗/
}

}
/∗ next ∗/
sc = pc + 1;

}
return p;

}

void
RemoveRows(Mat Rows, Mat X, int rrows, int xrows, int ncols)
{

/∗ remove row space of R from matrix X ∗/
int r, c, p, pc, maxcol, rank;
const Elem ∗SclTab;

rank = ReduceMats(Rows, Rows, rrows, ncols, 0);
/∗ find pivot ∗/
for (p = pc = 0; p < rank; p++) { /∗ each pivot row ∗/

while (pc < ncols && !Rows[p][pc])
pc++; /∗ find pivot ∗/

for (maxcol = ncols; maxcol > pc && !Rows[p][maxcol − 1]; maxcol−−); /∗ row end ∗/
/∗ clear column ∗/
for (r = 0; r < xrows; r++) {

if (X[r][pc]) {
SclTab = ALog + Log[X[r][pc]];
for (c = pc; c < maxcol; c++)

X[r][c] ^= SclTab[Log[Rows[p][c]]]; /∗ subtract pivot row ∗/
}

}
}

}

int

214

ReduceEqs(Eq ∗ E, int neqs, int ∗eqidx)
{

/∗ finds U, returns dimension of linkage among specified eqs ∗/
int i, j, r, c, ntot, rank;
Mat M, U;

for (i = ntot = 0; i < neqs; i++)
ntot += E[eqidx[i]].nrows;

/∗ allocate Matrices M, U ∗/
M = (Mat) malloc(ntot ∗ sizeof(Vec));
for (i = 0; i < ntot; i++) {

M[i] = (Vec) malloc(Nvar ∗ sizeof(Elem));
}
U = (Mat) malloc(ntot ∗ sizeof(Vec));
for (i = 0; i < ntot; i++) {

U[i] = (Vec) calloc(ntot, sizeof(Elem));
U[i][i] = 1; /∗ U is identity matrix ∗/

}

/∗ copy lin eqs into M ∗/
for (i = r = 0; i < neqs; i++)

for (j = 0; j < E[eqidx[i]].nrows; j++, r++)
for (c = 0; c < Nvar; c++)

M[r][c] = E[eqidx[i]].A[j][c];
#ifdef SHOWMATRICES

printf(" ReduceEqs input:\n");
WriteMatrix(M, ntot, Nvar, "A");

#endif
rank = ReduceMats(M, U, ntot, Nvar, ntot);
/∗#ifdef SHOWMATRICES ∗/
if (rank < ntot) {

/∗ printf(" ReduceEqs output dependencies:\n"); ∗/
// WriteMatrix(U, ntot, ntot, "L");

215

WriteMatrix(U + rank, ntot − rank, ntot, "U");
}
/∗#endif ∗/

/∗ de−allocate Matrices M, U ∗/
for (i = 0; i < ntot; i++)

free(U[i]);
free(U);
for (i = 0; i < ntot; i++)

free(M[i]);
free(M);

return ntot − rank;
}

int
CompareInts(const void ∗x, const void ∗y)
{

/∗ for sorting or searching array of ints ∗/
int a, b;
a = ∗((int ∗) x);
b = ∗((int ∗) y);
return (a < b) ? −1 : (a > b) ? 1 : 0;

}

int
CompareURows(const void ∗x, const void ∗y)
{

/∗ for sorting or searching matrix of rows of ints ∗/
/∗ NOTE: calling routine MUST set global var ARRAYLENGTH ∗/
Vec a, b;
int i;
a = ∗((Vec ∗) x);
b = ∗((Vec ∗) y);

216

for (i = 0; i < ARRAYLENGTH && a[i] == b[i]; i++);
if (i == ARRAYLENGTH)

return 0;
if (a[i] == 0)

return 1;
if (b[i] == 0)

return −1;
if (a[i] < b[i])

return −1;
return 1;

}

int
LinkEqs(Sys ∗ S, int neqs, int ∗eqidx)
{

/∗ finds U, removes known links, creates new links, returns dimension of new linkage

∗ among specified eqs ∗/
int i, j, k, l, kl, r, c, cl, rc, ntot, rank, dim;
int leqs, lcols, ldim;
Mat M, U, D, Rows, newU;
int ∗eqcol, ∗list, ∗includedlinks, nincl, dimincl;
int ∗∗newlist;
Status stat = OK;

qsort((void ∗) eqidx, (size_t) neqs, sizeof(int), CompareInts); /∗ sort indices ∗/

/∗ which cols of U go with which eqs? ∗/
eqcol = (int ∗) malloc((neqs + 1) ∗ sizeof(int)); /∗ alloc eqcol ∗/
for (i = ntot = 0; i < neqs; i++) {

eqcol[i] = ntot;
ntot += S−>E[eqidx[i]].nrows;

}
eqcol[i] = ntot; /∗ end, for later convenience ∗/

#ifdef DEBUG

217

fprintf(stderr, "eqidx:");
for (i = 0; i < neqs; i++)

fprintf(stderr, " %d", eqidx[i]);
fprintf(stderr, "\nmade eq col list:", r);
for (i = 0; i <= neqs; i++)

fprintf(stderr, " %d", eqcol[i]);
fprintf(stderr, " (for %d eqs)\n", neqs);

#endif

/∗ allocate Matrices M, U ∗/
M = (Mat) malloc(ntot ∗ sizeof(Vec));
for (i = 0; i < ntot; i++)

M[i] = (Vec) malloc(Nvar ∗ sizeof(Elem));
U = (Mat) malloc(ntot ∗ sizeof(Vec));
for (i = 0; i < ntot; i++) {

U[i] = (Vec) calloc(ntot, sizeof(Elem));
U[i][i] = 1; /∗ U is identity matrix ∗/

}

/∗ copy lin eqs into M ∗/
for (i = r = 0; i < neqs; i++)

for (j = 0; j < S−>E[eqidx[i]].nrows; j++, r++)
for (c = 0; c < Nvar; c++)

M[r][c] = S−>E[eqidx[i]].A[j][c];

#ifdef SHOWMATRICES
printf(" LinkEqs input:\n");
WriteMatrix(M, ntot, Nvar, "M");

#endif
rank = ReduceMats(M, U, ntot, Nvar, ntot);
dim = ntot − rank; /∗ dimension of dependency ∗/

if (dim) {
/∗ row reduce dependencies (could sort instead) ∗/

218

D = U + rank;
#ifdef DEBUG

WriteMatrix(D, dim, ntot, "D");
#endif
#if 0 /∗ do not sort ∗/

ReduceMats(D, D, dim, ntot, 0);
ARRAYLENGTH = ntot;
qsort((void ∗) D, (size_t) dim, sizeof(Vec), CompareURows); /∗ sort rows ∗/

#endif
/∗ find current links included ∗/
includedlinks = (int ∗) malloc(S−>nlinks ∗ sizeof(int)); /∗ alloc includedlinks ∗/
nincl = dimincl = 0;
for (i = 0; i < neqs − 1; i++) { /∗ each eq in U might have link ∗/

for (j = 0; j < S−>E[eqidx[i]].nlinks; j++) { /∗ each link of eq ∗/
l = S−>E[eqidx[i]].linklist[j];
list = S−>L[l].eqlist;
if (S−>L[l].dim <= dim − dimincl /∗ small enough ∗/

&& list[0] == eqidx[i] /∗ not yet checked ∗/
&&list[S−>L[l].neqs − 1] <= eqidx[neqs − 1]) /∗ not outside range ∗/

for (k = i + 1, kl = 1; k < neqs; k++){/∗ scan eqlist to match ∗/
if (list[kl] == eqidx[k]) { /∗ matched next one ∗/

if (++kl == S−>L[l].neqs) { /∗ got em all ∗/
includedlinks[nincl++] = l;
dimincl += S−>L[l].dim;
if (dimincl >= dim) {

i = neqs;
j = S−>nlinks;

} /∗ nothing left ∗/
break;

}
} else if (list[kl] < eqidx[k]) /∗ skipped one ∗/

break;
}

}

219

}
/∗ eliminate included links ∗/

#ifdef DEBUG
fprintf(stderr, "found %d included links of total dimension %d\n", nincl, dimincl);

#endif
if (nincl && dim > dimincl) { /∗ dimension reduced, still positive ∗/

/∗ copy included links’ dependencies into Rows ∗/
Rows = (Mat) malloc(dimincl ∗ sizeof(Vec));
for (i = 0; i < dimincl; i++)

Rows[i] = (Vec) calloc(ntot, sizeof(Elem));
for (i = rc = 0; i < nincl; i++) { /∗ each incl link ∗/

l = includedlinks[i];
list = S−>L[l].eqlist;
for (kl = k = cl = 0; kl < S−>L[l].neqs; kl++) { /∗ each eq in link ∗/

while (eqidx[k] < list[kl])
k++; /∗ find eq ∗/

c = eqcol[k];
for (j = 0; j < S−>E[eqidx[k]].nrows; j++) /∗ each col in block ∗/

for (r = 0; r < S−>L[l].dim; r++) /∗ each row of link ∗/
Rows[rc + r][c + j] = S−>L[l].U[r][cl + j]; /∗ copy block ∗/

cl += j; /∗ col in link for next eq ∗/
}
rc += r; /∗ row in copy for next link ∗/

}
/∗ remove included links ∗/

#ifdef DEBUG
WriteMatrix(Rows, dimincl, ntot, "Rows");

#endif
RemoveRows(Rows, D, dimincl, dim, ntot);
for (i = dimincl; i > 0;)

free(Rows[−−i]);
free(Rows);
r = ReduceMats(D, D, dim, ntot, 0);
if (dim != r + dimincl) {

220

fprintf(stderr, " ERROR in LinkEqs; reduction didn’t work: %d + %d != %
d, links may be incorrect!\n",

r, dimincl, dim);
stat = Fail;

}
}
free(includedlinks);
/∗ at this point D has dimension dim−dimincl and is reduced ∗/
dim −= dimincl;

#ifdef SHOWMATRICES
if (rank < ntot) {

printf(" LinkEqs output dependencies:\n");
WriteMatrix(D, dim, ntot, "D");

}
#endif

if (dim) { /∗ then new link(s), check for link dim

∗ > 1 ∗/
/∗ make new list of eqs for each row; extra for number of eqs, cols ∗/
newlist = (int ∗∗) malloc(dim ∗ sizeof(int ∗));
for (i = 0; i < dim; i++)

newlist[i] = (int ∗) malloc((neqs + 2) ∗ sizeof(int));
#ifdef DEBUG

fprintf(stderr, "now dim = %d, make eq lists\n", dim);
#endif

for (r = 0; r < dim; r++) { /∗ each row ∗/
/∗ new list of eqs in this row ∗/
for (c = i = k = lcols = 0; c < ntot;) {

while (c < ntot && !D[r][c])
c++; /∗ next nonzero ∗/

if (c < ntot) { /∗ found another ∗/
while (eqcol[k] <= c)

k++; /∗ til beyond ∗/
newlist[r][i++] = k − 1; /∗ save index ∗/
c = eqcol[k]; /∗ continue from next ∗/

221

lcols += c − eqcol[k − 1];
}

}
newlist[r][neqs] = i; /∗ new neqs ∗/
newlist[r][neqs + 1] = lcols; /∗ new ncols ∗/

}
#ifdef DEBUG

fprintf(stderr, "made %d eq lists\n", r);
for (r = 0; r < dim; r++) {

fprintf(stderr, " list %d:", r);
for (i = 0; i < newlist[r][neqs]; i++)

fprintf(stderr, " %d", newlist[r][i]);
fprintf(stderr, ", n = %d, d = %d\n", newlist[r][neqs], newlist[r][neqs + 1]);

}
#endif

/∗ make new Link ∗/
for (r = 0; r < dim;) { /∗ each row that starts link ∗/

leqs = newlist[r][neqs];
lcols = newlist[r][neqs + 1];
for (i = r + 1; i < dim /∗ find identical lists, assume row−ech ∗/

&& newlist[i][0] == newlist[r][0]
&& newlist[i][neqs] == leqs
&& newlist[i][neqs + 1] == lcols;) {

#ifndef ONEDIMLINKS
for (j = 1; j < leqs && newlist[i][j] == newlist[r][j]; j++);
if (j == leqs)

i++; /∗ found twin list, keep looking ∗/
else

#endif
break;

}
ldim = i − r; /∗ now i−r is dimension of new link ∗/

#ifdef DEBUG

222

fprintf(stderr, "about to make new link: neqs = %d, dim = %d, cols = %d\
n", leqs, ldim, lcols);

#endif
/∗ allocate & initialize eqlist & U for this link ∗/
list = (int ∗) malloc(leqs ∗ sizeof(int));
newU = (Mat) malloc(dim ∗ sizeof(Vec)); /∗ new U for link ∗/
for (j = 0; j < ldim; j++) /∗ allocate rows of new U ∗/

newU[j] = (Vec) malloc(lcols ∗ sizeof(Elem));
for (i = cl = 0; i < leqs; i++) { /∗ each eq in link ∗/

k = newlist[r][i];
list[i] = eqidx[k];
for (c = eqcol[k]; c < eqcol[k + 1]; c++, cl++) /∗ each col in block ∗/

for (j = 0; j < ldim; j++) /∗ each row of link ∗/
newU[j][cl] = D[r + j][c]; /∗ copy block ∗/

}
if (NewLink(S, leqs, ldim, lcols, list, newU) != OK)

return −1; /∗ failure signal ∗/
l = S−>nlinks − 1;

#ifdef DEBUG
fprintf(stderr, "made new link #%d\n", l);

#endif
r += ldim;

}
for (i = dim; i > 0;)

free(newlist[−−i]);
free(newlist);

}
}
/∗ de−allocate Matrices M, U ∗/
for (i = ntot; i > 0;)

free(U[−−i]);
free(U);
for (i = ntot; i > 0;)

free(M[−−i]);

223

free(M);
free(eqcol);

return dim;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ RHS Tools ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void
WriteZ(Link ∗ link)
{

/∗ writes Z matrix of link ∗/
int i, j, k, n;
Eq ∗eq;

printf(" link #");
n = (int) (link − S−>L); /∗ link number? ∗/

if (n < 0 || n >= S−>nlinks) {
printf(" %d ??", n); return;}

else
printf("%3d", n);

printf("; %d eqs:", link−>neqs);
for (i = 0; i < link−>neqs; i++)

printf(" %d", link−>eqlist[i]);
printf("; Z:");

for (i = 0; i < link−>neqs; i++) {
k = link−>eqlist[i];
printf("\n%3d: ", k);
eq = S−>E + k;
for (j = 0; j < link−>dim; j++) {

if (j)
printf("\n ");

224

for (k = 0; k < eq−>nrhs; k++)
printf(OutFormat, link−>Z[i][j][k]);

printf(" (%d)", (int)(link−>Z[i][j][k]) + 1);
}

}
printf("\n");

}

/∗ rhs_disagree takes a Link and list of indices to RHS and

returns 0 if agree, else nonzero ∗/
int
rhs_disagree(Link ∗ link, int ∗irhs)
{

int len, ieq, row, col, ∗ires, i, rv;
Vec res;

len = intlen(link−>dim);
res = (Vec) calloc(len, sizeof(int)); /∗ to sum result ∗/
for (ieq = col = 0; ieq < link−>neqs; ieq++)

for (row = 0; row < link−>dim; row++)
res[row] ^= link−>Z[ieq][row][irhs[ieq]];

ires = (int ∗) res;
for (i = 1; i < len; i++)

ires[0] |= ires[i]; /∗ combine all nonzero bits ∗/
rv = ires[0];
free(res);
return rv;

}

/∗ find_rhs takes a Link, an Eq number, and list of indices to RHS and an array for output

returns number of rhs in given eq that agree with specified RHS values, puts indices in array

∗/
int
find_rhs(Link ∗ link, int zeq, int ∗irhs, int ∗out)

225

{
int len, ieq, row, zi = −1, i, rv;
Vec res;
Eq ∗eq;

len = intlen(link−>dim);
res = (Vec) calloc(len, sizeof(int)); /∗ to sum result ∗/
for (ieq = 0; ieq < link−>neqs; ieq++) {

if (link−>eqlist[ieq] == zeq) {
zi = ieq;
irhs−−;

} else if (ieq == link−>neqs − 1 && zi == −1) { /∗ didn’t find it! (no overrun) ∗/
fprintf(stderr, " find_rhs could not find eq %d in link %d!\n", zeq, (int) (link −

S−>L));
free(res);
return −1; /∗ flag error ∗/

} else
for (row = 0; row < link−>dim; row++)

res[row] ^= link−>Z[ieq][row][irhs[ieq]];
}
/∗ at this point, res has sum excluding specified Eq. Check which z values match (sum=0) ∗/
eq = S−>E + zeq;
for (rv = i = 0; i < eq−>nrhs; i++) {

for (row = 0; row < link−>dim; row++)
if (link−>Z[zi][row][i] != res[row])

break; /∗ not consistent ∗/
if (row == link−>dim)

out[rv++] = i;
}
free(res);
return rv;

}

#include "newagree.h"

226

APPENDIX E:

Square MRHS Equation Creation Code

This appendix contains the C code for the construction of MRHS equations for Small scale
variants of the SQUARE algorithm. It consists of a main file (sqr_eqs_encr_f) and a header file
(sqr_eqs_io_f).

sqr_eqs_encr_f.c

/∗
sqr_eqs.c

version: 2012 Jun 14

Generate MRHS Equations for

Small Scale Variants of the SQUARE algorithm

Also does the encryption!

Output in field elements, not bits!

Notes: always keysize = block size

optional command line arguments:

variant (string) = "nrce" to specify small−scale variant of AES:

n (hex) is # rounds (1 − A; default=A=10)

r (int) is # rows (1, 2, 4; default=4)

c (int) is # cols (1, 2, 4; default=4)

e (int) is # bits in word (2, 4, 8; default=8)

defaults are "8448" for standard SQUARE(8; 4; 4; 8)

input (hex) = plaintext block (default is zero block)

output (hex) = key block (default is zero block)

outfile (string) = filename of output file (default is stdout)

while all the above are optional, you must have one to have the next...

save all the X state data (output of S−box after Transpose) and K key data,

print it out after the equations.

encryption re−organized the to give the X state:

put Transpose before S−box

227

do NOT do "in place"; rather, put result in new place.

(M’) (AMTS)∗n (A) rather than

(M’A) (MSTA)∗n [where T is Transpose, S is Sbox, M is Mix...]

Does actual KeySchedule and Encrypt.

(Note: keep M’ = InvMix rather than modified 1st round.)

∗/

#include <stdio.h>
#include <string.h>

//#define OUTPUTBITS // to print output in bits (otherwise in field elements)

#define MAXROUNDS 8
#define MAXROWS 4
#define MAXCOLS 4
#define MAXBITS 8
#define MAXBLOCK MAXROWS∗MAXCOLS
#define MAXKEY MAXBLOCK
#define MAXVARS MAXROUNDS∗MAXROWS∗(MAXCOLS+1)

unsigned char RoundKeys[(MAXROUNDS + 1) ∗MAXBLOCK];
unsigned char States[(MAXROUNDS + 3) ∗MAXBLOCK];
unsigned int ∗Log;
unsigned char ∗ALog, ∗Sbox, ∗Mix, ∗InvMix, fieldmask;
unsigned char ∗MixC, ∗InvMixC, ∗MixR, ∗InvMixR;
int nRounds = 8, nRows = 4, nCols = 4, nBits = 8, field, block,

KeyBits, KeyCols, nKeyCols;
int nEqs, nVars, nKeyVars;
unsigned char PT[MAXBLOCK], CT[MAXBLOCK], Eq[2][MAXVARS], Data[2];
enum InOut { In, Out };
enum VarType { Key, X, State };
int Len, Wid; // for eqs

unsigned int Log8[256] = {

228

0x00,0x00,0x01,0x86,0x02,0x0D,0x87,0x4C,0x03,0xD2,0x0E,0xAE,0x88,0x22,0x4D,0x93,
0x04,0x1A,0xD3,0xCB,0x0F,0x98,0xAF,0xA8,0x89,0xF0,0x23,0x59,0x4E,0x35,0x94,0x09,
0x05,0x8F,0x1B,0x6E,0xD4,0x39,0xCC,0xBB,0x10,0x68,0x99,0x77,0xB0,0xDF,0xA9,0x72,
0x8A,0xFA,0xF1,0xA0,0x24,0x52,0x5A,0x60,0x4F,0x2F,0x36,0xDC,0x95,0x32,0x0A,0x1F,
0x06,0xA5,0x90,0x49,0x1C,0x5D,0x6F,0xB8,0xD5,0xC1,0x3A,0xB5,0xCD,0x63,0xBC,0

x3D,
0x11,0x44,0x69,0x81,0x9A,0x27,0x78,0xC4,0xB1,0xE6,0xE0,0xEA,0xAA,0x55,0x73,0xD8,
0x8B,0xF6,0xFB,0x16,0xF2,0xF4,0xA1,0x40,0x25,0x42,0x53,0xE4,0x5B,0xA3,0x61,0xBF,
0x50,0xF8,0x30,0x2D,0x37,0x8D,0xDD,0x66,0x96,0x18,0x33,0xEE,0x0B,0xFD,0x20,0xD0,
0x07,0x57,0xA6,0xC9,0x91,0xAC,0x4A,0x84,0x1D,0xDA,0x5E,0x9E,0x70,0x75,0xB9,0x6C

,
0xD6,0xE8,0xC2,0x7F,0x3B,0xB3,0xB6,0x47,0xCE,0xEC,0x64,0x2B,0xBD,0xE2,0x3E,0

x14,
0x12,0x29,0x45,0x7D,0x6A,0x9C,0x82,0xC7,0x9B,0xC6,0x28,0x7C,0x79,0x7A,0xC5,0x7B,
0xB2,0x46,0xE7,0x7E,0xE1,0x13,0xEB,0x2A,0xAB,0x83,0x56,0xC8,0x74,0x6B,0xD9,0x9D

,
0x8C,0x65,0xF7,0x2C,0xFC,0xCF,0x17,0xED,0xF3,0x3F,0xF5,0x15,0xA2,0xBE,0x41,0xE3

,
0x26,0xC3,0x43,0x80,0x54,0xD7,0xE5,0xE9,0x5C,0xB7,0xA4,0x48,0x62,0x3C,0xC0,0xB4,
0x51,0x5F,0xF9,0x9F,0x31,0x1E,0x2E,0xDB,0x38,0xBA,0x8E,0x6D,0xDE,0x71,0x67,0x76,
0x97,0xA7,0x19,0xCA,0x34,0x08,0xEF,0x58,0x0C,0x4B,0xFE,0x85,0x21,0x92,0xD1,0xAD

,
};

unsigned char ALog8[256] = {
0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0xF5,0x1F,0x3E,0x7C,0xF8,0x05,0x0A,0x14,
0x28,0x50,0xA0,0xB5,0x9F,0xCB,0x63,0xC6,0x79,0xF2,0x11,0x22,0x44,0x88,0xE5,0x3F,
0x7E,0xFC,0x0D,0x1A,0x34,0x68,0xD0,0x55,0xAA,0xA1,0xB7,0x9B,0xC3,0x73,0xE6,0

x39,
0x72,0xE4,0x3D,0x7A,0xF4,0x1D,0x3A,0x74,0xE8,0x25,0x4A,0x94,0xDD,0x4F,0x9E,0xC9

,
0x67,0xCE,0x69,0xD2,0x51,0xA2,0xB1,0x97,0xDB,0x43,0x86,0xF9,0x07,0x0E,0x1C,0x38,
0x70,0xE0,0x35,0x6A,0xD4,0x5D,0xBA,0x81,0xF7,0x1B,0x36,0x6C,0xD8,0x45,0x8A,0xE1

,

229

0x37,0x6E,0xDC,0x4D,0x9A,0xC1,0x77,0xEE,0x29,0x52,0xA4,0xBD,0x8F,0xEB,0x23,0
x46,

0x8C,0xED,0x2F,0x5E,0xBC,0x8D,0xEF,0x2B,0x56,0xAC,0xAD,0xAF,0xAB,0xA3,0xB3,0
x93,

0xD3,0x53,0xA6,0xB9,0x87,0xFB,0x03,0x06,0x0C,0x18,0x30,0x60,0xC0,0x75,0xEA,0x21,
0x42,0x84,0xFD,0x0F,0x1E,0x3C,0x78,0xF0,0x15,0x2A,0x54,0xA8,0xA5,0xBF,0x8B,0xE3,
0x33,0x66,0xCC,0x6D,0xDA,0x41,0x82,0xF1,0x17,0x2E,0x5C,0xB8,0x85,0xFF,0x0B,0x16,
0x2C,0x58,0xB0,0x95,0xDF,0x4B,0x96,0xD9,0x47,0x8E,0xE9,0x27,0x4E,0x9C,0xCD,0x6F

,
0xDE,0x49,0x92,0xD1,0x57,0xAE,0xA9,0xA7,0xBB,0x83,0xF3,0x13,0x26,0x4C,0x98,0xC5

,
0x7F,0xFE,0x09,0x12,0x24,0x48,0x90,0xD5,0x5F,0xBE,0x89,0xE7,0x3B,0x76,0xEC,0x2D,
0x5A,0xB4,0x9D,0xCF,0x6B,0xD6,0x59,0xB2,0x91,0xD7,0x5B,0xB6,0x99,0xC7,0x7B,0

xF6,
0x19,0x32,0x64,0xC8,0x65,0xCA,0x61,0xC2,0x71,0xE2,0x31,0x62,0xC4,0x7D,0xFA,0x01,
};

unsigned char Sbox8[256] = {
0xB1,0xCE,0xC3,0x95,0x5A,0xAD,0xE7,0x02,0x4D,0x44,0xFB,0x91,0x0C,0x87,0xA1,0

x50,
0xCB,0x67,0x54,0xDD,0x46,0x8F,0xE1,0x4E,0xF0,0xFD,0xFC,0xEB,0xF9,0xC4,0x1A,0

x6E,
0x5E,0xF5,0xCC,0x8D,0x1C,0x56,0x43,0xFE,0x07,0x61,0xF8,0x75,0x59,0xFF,0x03,0x22,
0x8A,0xD1,0x13,0xEE,0x88,0x00,0x0E,0x34,0x15,0x80,0x94,0xE3,0xED,0xB5,0x53,0x23,
0x4B,0x47,0x17,0xA7,0x90,0x35,0xAB,0xD8,0xB8,0xDF,0x4F,0x57,0x9A,0x92,0xDB,0

x1B,
0x3C,0xC8,0x99,0x04,0x8E,0xE0,0xD7,0x7D,0x85,0xBB,0x40,0x2C,0x3A,0x45,0xF1,0x42,
0x65,0x20,0x41,0x18,0x72,0x25,0x93,0x70,0x36,0x05,0xF2,0x0B,0xA3,0x79,0xEC,0x08,
0x27,0x31,0x32,0xB6,0x7C,0xB0,0x0A,0x73,0x5B,0x7B,0xB7,0x81,0xD2,0x0D,0x6A,0x26,
0x9E,0x58,0x9C,0x83,0x74,0xB3,0xAC,0x30,0x7A,0x69,0x77,0x0F,0xAE,0x21,0xDE,0xD0

,
0x2E,0x97,0x10,0xA4,0x98,0xA8,0xD4,0x68,0x2D,0x62,0x29,0x6D,0x16,0x49,0x76,0xC7,
0xE8,0xC1,0x96,0x37,0xE5,0xCA,0xF4,0xE9,0x63,0x12,0xC2,0xA6,0x14,0xBC,0xD3,0x28,

230

0xAF,0x2F,0xE6,0x24,0x52,0xC6,0xA0,0x09,0xBD,0x8C,0xCF,0x5D,0x11,0x5F,0x01,0xC5
,

0x9F,0x3D,0xA2,0x9B,0xC9,0x3B,0xBE,0x51,0x19,0x1F,0x3F,0x5C,0xB2,0xEF,0x4A,0
xCD,

0xBF,0xBA,0x6F,0x64,0xD9,0xF3,0x3E,0xB4,0xAA,0xDC,0xD5,0x06,0xC0,0x7E,0xF6,0
x66,

0x6C,0x84,0x71,0x38,0xB9,0x1D,0x7F,0x9D,0x48,0x8B,0x2A,0xDA,0xA5,0x33,0x82,0x39,
0xD6,0x78,0x86,0xFA,0xE4,0x2B,0xA9,0x1E,0x89,0x60,0x6B,0xEA,0x55,0x4C,0xF7,0xE2,
};

unsigned char invSbox8[256] = {
0x35,0xBE,0x07,0x2E,0x53,0x69,0xDB,0x28,0x6F,0xB7,0x76,0x6B,0x0C,0x7D,0x36,0x8B,
0x92,0xBC,0xA9,0x32,0xAC,0x38,0x9C,0x42,0x63,0xC8,0x1E,0x4F,0x24,0xE5,0xF7,0xC9,
0x61,0x8D,0x2F,0x3F,0xB3,0x65,0x7F,0x70,0xAF,0x9A,0xEA,0xF5,0x5B,0x98,0x90,0xB1,
0x87,0x71,0x72,0xED,0x37,0x45,0x68,0xA3,0xE3,0xEF,0x5C,0xC5,0x50,0xC1,0xD6,0xCA

,
0x5A,0x62,0x5F,0x26,0x09,0x5D,0x14,0x41,0xE8,0x9D,0xCE,0x40,0xFD,0x08,0x17,0x4A,
0x0F,0xC7,0xB4,0x3E,0x12,0xFC,0x25,0x4B,0x81,0x2C,0x04,0x78,0xCB,0xBB,0x20,0xBD

,
0xF9,0x29,0x99,0xA8,0xD3,0x60,0xDF,0x11,0x97,0x89,0x7E,0xFA,0xE0,0x9B,0x1F,0xD2,
0x67,0xE2,0x64,0x77,0x84,0x2B,0x9E,0x8A,0xF1,0x6D,0x88,0x79,0x74,0x57,0xDD,0xE6,
0x39,0x7B,0xEE,0x83,0xE1,0x58,0xF2,0x0D,0x34,0xF8,0x30,0xE9,0xB9,0x23,0x54,0x15,
0x44,0x0B,0x4D,0x66,0x3A,0x03,0xA2,0x91,0x94,0x52,0x4C,0xC3,0x82,0xE7,0x80,0xC0,
0xB6,0x0E,0xC2,0x6C,0x93,0xEC,0xAB,0x43,0x95,0xF6,0xD8,0x46,0x86,0x05,0x8C,0xB0,
0x75,0x00,0xCC,0x85,0xD7,0x3D,0x73,0x7A,0x48,0xE4,0xD1,0x59,0xAD,0xB8,0xC6,0

xD0,
0xDC,0xA1,0xAA,0x02,0x1D,0xBF,0xB5,0x9F,0x51,0xC4,0xA5,0x10,0x22,0xCF,0x01,0

xBA,
0x8F,0x31,0x7C,0xAE,0x96,0xDA,0xF0,0x56,0x47,0xD4,0xEB,0x4E,0xD9,0x13,0x8E,0x49

,
0x55,0x16,0xFF,0x3B,0xF4,0xA4,0xB2,0x06,0xA0,0xA7,0xFB,0x1B,0x6E,0x3C,0x33,0

xCD,
0x18,0x5E,0x6A,0xD5,0xA6,0x21,0xDE,0xFE,0x2A,0x1C,0xF3,0x0A,0x1A,0x19,0x27,0

x2D,

231

};

unsigned int Log4[16] = {
0x0, 0x0, 0x1, 0xC, 0x2, 0x9, 0xD, 0x7, 0x3, 0x4, 0xA, 0x5, 0xE, 0xB, 0x8, 0x6,

};

unsigned char ALog4[16] = {
0x1, 0x2, 0x4, 0x8, 0x9, 0xB, 0xF, 0x7, 0xE, 0x5, 0xA, 0xD, 0x3, 0x6, 0xC, 0x1,

};

unsigned char Sbox4[16] = {
0x9, 0x2, 0x5, 0x1, 0xB, 0x8, 0xD, 0x3, 0x4, 0xE, 0xC, 0x7, 0xF, 0xA, 0x0, 0x6,

};

unsigned char invSbox4[16] = {
0xE, 0x3, 0x1, 0x7, 0x8, 0x2, 0xF, 0xB, 0x5, 0x0, 0xD, 0x4, 0xA, 0x6, 0x9, 0xC,

};

unsigned int Log2[4] = {
0, 0, 1, 2,

};

unsigned char ALog2[4] = {
1, 2, 3, 1,

};

unsigned char Sbox2[4] = {
2, 1, 3, 0,

};

unsigned char invSbox2[4] = {
3, 1, 0, 2,

};

232

unsigned char Mix4[8] = {
0x2,0x3,0x1,0x1,0x2,0x3,0x1,0x1,
};

unsigned char InvMix4[8] = {
0xE,0xB,0xD,0x9,0xE,0xB,0xD,0x9,
};

unsigned char InvMix42[8] = {
0x0,0x2,0x3,0x0,0x0,0x2,0x3,0x0,
};

unsigned char Mix2[4] = {
0x3,0x2,0x3,0x2,
};

unsigned char Mix1[2] = {
0x1,0x1,
};

// multiply by "2" in field

#define POLY8 0xF5
#define POLY4 0x19
#define POLY2 0x07
unsigned char HIBIT, POLY;
unsigned char mul2 (unsigned char x) {

unsigned char y;
y = x << 1;
if (x & HIBIT) y ^= POLY;
return(y);

}

// multiply two bytes in field

unsigned char mul(unsigned char x, unsigned char y)

233

{
if (x && y)

return (ALog[(Log[x] + Log[y]) % (field − 1)]);
else

return (0);
}

#include "sqr_eqs_io_f.h" // include field I/O package

// set up specific small−scale variant of AES

// assumes main() already set: nRounds, nRows, nCols, nBits

int setup(void)
{

int returnval = 0;

// check parameters for validity

if (nRounds < 1 || nRounds > MAXROUNDS) {
nRounds = MAXROUNDS;
returnval = 1;

}
switch (nBits) {
case 2:

Log = Log2;
ALog = ALog2;
Sbox = Sbox2;
POLY = POLY2;
field = 4;
break;

case 4:
Log = Log4;
ALog = ALog4;
Sbox = Sbox4;
POLY = POLY4;
field = 16;

234

break;
default:

nBits = 8;
returnval = 1; // if bad value, use default, fall thru

case 8:
Log = Log8;
ALog = ALog8;
Sbox = Sbox8;
POLY = POLY8;
field = 256;
break;

}
switch (nRows) {
case 1:

MixC = InvMixC = Mix1;
break;

case 2:
MixC = InvMixC = Mix2;
break;

default:
nRows = 4;
returnval = 1; // if bad value, use default, fall thru

case 4:
MixC = Mix4;
InvMixC = (nBits == 2) ? InvMix42 : InvMix4;
break;

}
switch (nCols) {

case 1:
MixR = InvMixR = Mix1;
break;

case 2:
MixR = InvMixR = Mix2;
break;

235

default:
nCols = 4;
returnval = 1; // if bad value, use default, fall thru

case 4:
MixR = Mix4;
InvMixR = (nBits == 2) ? InvMix42 : InvMix4;
break;

}
MixC += nRows; InvMixC += nRows; // so can slide index backwards

MixR += nCols; InvMixR += nCols; // so can slide index backwards

Mix = MixC ; InvMix = InvMixC; // TEMPO

fieldmask = field − 1;
HIBIT = 1 << (nBits − 1);
setScale(); // set up bit matrices for scalars

block = nRows ∗ nCols;
KeyBits = block ∗ nBits;
nKeyCols = (nRounds + 1) ∗ nCols;
nKeyVars = block; // key sched is linear!

nVars = nKeyVars + block ∗ (nRounds − 1);
nEqs = nVars;

return returnval;
}

#define RC(r) (ALog[r−1])

/∗
simplify key sched: block by block

allow rectangles

∗/
int KeySchedule(unsigned char Key[])
{

int returnval = 0;
int i, r, c, round;

236

// unsigned char col[MAXROWS], t;

KeyCols = nCols;
/∗ Copy key ∗/
for (i = 0; i < block; i++)

RoundKeys[i] = Key[i];

for (round = 1; round <= nRounds; round++) {
/∗ calculate new columns until enough ∗/
if (round&1) {Len = nCols; Wid = nRows; Mix = MixR;}
else {Len = nRows; Wid = nCols; Mix = MixC;}
for (r = 1; r < Len; r++) // col 0 = rotate prev col

RoundKeys[round∗block+ r−1] = RoundKeys[round∗block−Len +r];
RoundKeys[round∗block+ r−1] = RoundKeys[round∗block−Len +0];
RoundKeys[round∗block+ 0] ^= RC(round); // + round key

if (Wid>1) { // need to handle KeyCols = 1 differently

for (r = 0; r < Len; r++)
RoundKeys[round∗block+ r] ^= RoundKeys[(round−1)∗block+ r];

for (c=1; c<Wid; c++)
for (r = 0; r < Len; r++)

RoundKeys[round∗block+ c∗Len+r] =
RoundKeys[round∗block+ (c−1)∗Len+r] ^ RoundKeys[(round−1)∗block+ c∗Len+

r];
} // more cols

} // round loop

return returnval;
}

// do pre−round on block: (M’)

void preround(unsigned char State[])
{

unsigned char t[MAXROWS];
int i, r, c;

237

for (c = 0; c < nCols; c++) {
for (r = 0; r < nRows; r++)

for (t[r] = i = 0; i < nRows; i++)
t[r] ^= mul(State[c∗nRows+i],

InvMixC[i−r]); // InvMixColumns

for (r = 0; r < nRows; r++)
State[block + c∗nRows+r] = t[r];

}
}

// do one round on block: (AMTS)

void doround(unsigned char State[], unsigned char roundKey[], int round)
{

unsigned char t[MAXROWS];
int i, r, c;

if (round&1) {Len = nCols; Wid = nRows; Mix = MixR;}
else {Len = nRows; Wid = nCols; Mix = MixC;}
for (c = 0; c < Wid; c++) {

for (r = 0; r < Len; r++)
for (t[r] = i = 0; i < Len; i++)

t[r] ^= mul(State[c∗Len+i] ^ roundKey[c∗Len+i], // AddRoundKey

Mix[i−r]); // MixColumns

for (r = 0; r < Len; r++)
State[block + r∗Wid+c] = t[r]; // Transpose

}

State += block;
for (i = 0; i < block; i++)

State[i] = Sbox[State[i]]; // SubBytes

}

// do post−round on block: (A)

void postround(unsigned char State[], unsigned char roundKey[])

238

{
int i;
for (i = 0; i < block; i++)

State[block + i] = State[i] ^ roundKey[i]; // AddRoundKey

}

// encrypt block (NOT in place − keep output of each S−box)

void encrypt(void)
{

int i, round;

for (i = 0; i < block; i++)
States[i] = PT[i]; // copy PT in

preround(States);
for (round = 0; round < nRounds; round++) {

doround(States + (round+1)∗block, RoundKeys + round∗block, round);
}
postround(States + (round+1)∗block, RoundKeys + round∗block);
for (i = 0; i < block; i++)

CT[i] = States[(round+2)∗block + i]; // copy CT out

}

void NewEq(void)
{

int i, r;

for (r = In; r <= Out; r++) {
Data[r] = 0;
for (i = 0; i < nVars; i++)

Eq[r][i] = 0;
}

}

int VarNum(enum VarType var,

239

int round, int col, int row)
{

int i;
i = col∗(round&1 ? nCols : nRows)+row;
switch (var) {

case Key:
return (i);

case X:
return (round∗block + i);

}
return (0); // dummy

}

void AddVar(enum InOut line, enum VarType var,
int round, int col, int row, int scale)

{
int r, i;
int Len, Wid; // local copies for local recursive "round"

unsigned char ∗Mix;

if (round&1) {Len = nCols; Wid = nRows; Mix = MixR;}
else {Len = nRows; Wid = nCols; Mix = MixC;}
switch (var) {

case Key:
i = col ∗ Len + row;
if (round == 0) // key var

Eq[line][VarNum(Key, round, col, row)] ^= scale;
else if (col == 0) { // F(col)

if (Wid > 1)
AddVar(line, Key, round−1, i/Wid, i%Wid, scale);

i = block−Len + (row+1)%Len;
AddVar(line, Key, round−1, i/Wid, i%Wid, scale);
if (row == 0)

Data[line] ^= mul(RC(round), scale); // track round constants

240

}
else {

AddVar(line, Key, round−1, i/Wid, i%Wid, scale);
AddVar(line, Key, round, col−1, row, scale);

}
break;

case X:
Eq[line][VarNum(X, round, col, row)] ^= scale;
break;

case State: // scale must be 1; Mix (X+K)

if (round > 0)
for (r = 0; r < Len; r++)

AddVar(line, X, round, col, r, Mix[r−row]);
for (r = 0; r < Len; r++)

AddVar(line, Key, round, col, r, Mix[r−row]);
break;

}
}

// do only round #0 on block

void doonlyroundEqs(int round)
{

int r, c;

Len = nRows; Wid = nCols; Mix = MixC;;
for (r = 0; r < Len; r++) {

for (c = 0; c < Wid; c++) {
NewEq();
AddVar(In, State, round, c, r, 1);
AddVar(Out, Key, round+1, r, c, 1); // T

Data[In] ^= PT[c∗Len + r];
Data[Out] ^= CT[r∗Wid + c]; // T

WriteEq();
}

241

}
}

// do round #0 on block

void doround0Eqs(int round)
{

int r, c;

Len = nRows; Wid = nCols; Mix = MixC;
for (r = 0; r < Len; r++) {

for (c = 0; c < Wid; c++) {
NewEq();
AddVar(In, State, round, c, r, 1);
AddVar(Out, X, round+1, r, c, 1); // T

Data[In] ^= PT[c∗Len + r];
WriteEq();

}
}

}

// do one round on block

void doroundEqs(int round)
{

int r, c;

if (round&1) {Len = nCols; Wid = nRows; Mix = MixR;}
else {Len = nRows; Wid = nCols; Mix = MixC;}
for (r = 0; r < Len; r++) {

for (c = 0; c < Wid; c++) {
NewEq();
AddVar(In, State, round, c, r, 1);
AddVar(Out, X, round+1, r, c, 1); // T

WriteEq();
}

242

}
}

// do round #n on block

void doroundnEqs(int round)
{

int r, c;

if (round&1) {Len = nCols; Wid = nRows; Mix = MixR;}
else {Len = nRows; Wid = nCols; Mix = MixC;}
for (r = 0; r < Len; r++) {

for (c = 0; c < Wid; c++) {
NewEq();
AddVar(In, State, round, c, r, 1);
AddVar(Out, Key, round+1, r, c, 1); // T

Data[Out] ^= CT[r∗Wid + c]; // T

WriteEq();
}

}
}

void EncryptEqs(void)
{

int round;

if (nRounds == 1) {
doonlyroundEqs(0);
return;
}

doround0Eqs(0);
for (round = 1; round < nRounds−1; round++) {

doroundEqs(round);
}
doroundnEqs(round);

243

}

int main(int argc, char ∗argv[])
{
unsigned char Key[MAXBLOCK];

if (argc > 1) {
sscanf(argv[1], "%1x%1d%1d%1d",

&nRounds, &nRows, &nCols, &nBits);
}
fprintf(stderr, " nRounds=%d, nRows=%d, nCols=%d, nBits=%d\n",

nRounds, nRows, nCols, nBits);
if (setup())

fprintf(stderr,
"Bad parameter(s); now:\n nRounds=%d, nRows=%d, nCols=%d,

nBits=%d\n",
nRounds, nRows, nCols, nBits);

// by default KeyBits = bits in block

ReadBlock((argc > 2) ? argv[2] :
"000102030405060708090A0B0C0D0E0F", PT);

ReadBlock((argc > 3) ? argv[3] :
"000102030405060708090A0B0C0D0E0F", Key);

if (argc > 4)
if (freopen(argv[4], "w", stdout) != stdout) {

fprintf(stderr, "Could not open output file %s\n", argv[4]);
return 1;

}

KeySchedule(Key);
encrypt();

WriteSystemHeader();
EncryptEqs();

244

WriteVars();
printf(" nRounds=%d, nRows=%d, nCols=%d, nBits=%d\n",

nRounds, nRows, nCols, nBits);
WriteKeys();
WriteStates();

return (0);
}

sqr_eqs_io_f.h

/∗
sqr_eqs_io.h

version: 2012 Apr 15

∗/

/∗
Write Equation, field elements version

∗/

char ∗FieldFormat;
void setScale(void){ // set up FieldFormat

FieldFormat = (nBits > 4)? "%02X" : "%01X";
}

void writeValue(unsigned int x){
/∗ writes field element x ∗/

printf(FieldFormat, x);
}

void WriteSystemHeader(void) // note third number on top line: #bits in field

{
printf(" %d %d %d\n", nVars, nEqs, nBits);

}

245

void WriteEq(void)
{

int i, r;

printf(" %d %d\n", 2, field);
for (r = In; r <= Out; r++) {
for (i = 0; i < nVars; i++)

writeValue(Eq[r][i]);
printf("\n");
}
for (i=0; i < field; i++) {

if (!(i&15) && i) printf("\n");
writeValue(i ^ Data[In]);
writeValue(Sbox[i] ^ Data[Out]);
}
printf("\n");

}

// read hex data into block

void ReadBlock(char str[], unsigned char T[])
{

char ∗j;
int i, word;

switch (nBits) {
case 2:
if (block == 1) { // this is the only case with an odd number of words

word = 0;
sscanf(str, "%1x", &word);
T[0] = (unsigned char) (word & fieldmask);
i = 1; break;
}
for (i = 0, j = str; i < block;) {

246

if (sscanf(j++, "%1x", &word) != 1) break;
T[i++] = (unsigned char) ((word>>2) & fieldmask);
T[i++] = (unsigned char) (word & fieldmask);

}
break;

case 4:
for (i = 0; i < block; i++) {

if (sscanf(str+i, "%1x", &word) != 1) break;
T[i] = (unsigned char) word;

}
break;

case 8:
for (i = 0; i < block; i++) {

if (sscanf(str+2∗i, "%2x", &word) != 1) break;
T[i] = (unsigned char) word;

}
break;

default:
i = 0;

}
for (; i < block; i++)

T[i] = 0;
}

// write hex data from block

void WriteBlock(unsigned char T[])
{

int i;

for (i = 0; i < block; i++)
writeValue(T[i] & fieldmask);

}

// write Round Keys

247

void WriteKeys(void)
{

int round;

printf("Round Keys:\n");
for (round = 0; round <= nRounds; round++) {

printf(" %2d : ", round);
WriteBlock(RoundKeys + round∗block);
printf("\n");
}

}

// write States

void WriteStates(void)
{

int round;

printf("States: \n");
for (round = 0; round <= nRounds+2; round++) {

printf(" %2d : ", round−1);
WriteBlock(States + round∗block);
printf("\n");
}

}

// write Variables

void WriteVars(void)
{

int i, round;

printf("Variables:\n");
for (i = 0; i < block; i++)

writeValue(RoundKeys[i]);
printf("\n");

248

for (round = 1; round < nRounds; round++) {
for (i = 0; i < block; i++)

writeValue(States[(round+1)∗block + i]);
printf("\n");
}

}

249

THIS PAGE INTENTIONALLY LEFT BLANK

250

APPENDIX F:

Square MRHS Algorithm Code

The main code does not change to solve the Square variants using our methods. The program is
compiled from the same code see in Appendix D except with the following header file (sqfield-
arith) to replace the other field arithmetic definitions (fieldarith).

sqfieldarith.h

/∗
sqfieldarith.h

version: 2013 Jan 08

∗∗ SQUARE block cipher version!!

different representation of fields:

"h" poly basis in 2^8 : h^8+h^7+h^6+h^5+h^4+h^2+1 = 0

"beta" poly basis in 2^4 : b^4+b^3+1 = 0

"Omega" poly basis in 2^2 : w^2+w+1 = 0

∗/

/∗ field multiplication done through lookup logs, add logs, lookup antilog

to avoid doing modulo (q−1) the antilog table is doubled

to avoid testing for zero, log(0) = infinity (really 2q−1)

so need to pad end of antilog table with zeros up to 3q−3, also at 4q−2

here, rounded up size of tables for alignment reasons

Note: below embed smaller antilog tables in unused portion of bigger ones

Warning: in macros below, inversion or division by zero gives wrong answer,

as does zero to a power

∗/

#define fmul(x,y) (ALog[Log[x]+Log[y]]) /∗ field x∗y ∗/
#define finv(x) (ALog[FieldMask−Log[x]]) /∗ field 1/x (x != 0) ∗/
#define fdiv(x,y) (ALog[Log[x]+FieldMask−Log[y]]) /∗ field x/y (y != 0) ∗/
#define fpow(x,y) (ALog[(Log[x]∗(y)) % FieldMask +FieldMask]) /∗ (field x)^(integer y) ∗/

251

const Elem ∗ALog;
const int ∗Log;

const Elem ALogs[1024] = {
0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0xF5,0x1F,0x3E,0x7C,0xF8,0x05,0x0A,0x14,
0x28,0x50,0xA0,0xB5,0x9F,0xCB,0x63,0xC6,0x79,0xF2,0x11,0x22,0x44,0x88,0xE5,0x3F,
0x7E,0xFC,0x0D,0x1A,0x34,0x68,0xD0,0x55,0xAA,0xA1,0xB7,0x9B,0xC3,0x73,0xE6,0

x39,
0x72,0xE4,0x3D,0x7A,0xF4,0x1D,0x3A,0x74,0xE8,0x25,0x4A,0x94,0xDD,0x4F,0x9E,0xC9

,
0x67,0xCE,0x69,0xD2,0x51,0xA2,0xB1,0x97,0xDB,0x43,0x86,0xF9,0x07,0x0E,0x1C,0x38,
0x70,0xE0,0x35,0x6A,0xD4,0x5D,0xBA,0x81,0xF7,0x1B,0x36,0x6C,0xD8,0x45,0x8A,0xE1

,
0x37,0x6E,0xDC,0x4D,0x9A,0xC1,0x77,0xEE,0x29,0x52,0xA4,0xBD,0x8F,0xEB,0x23,0

x46,
0x8C,0xED,0x2F,0x5E,0xBC,0x8D,0xEF,0x2B,0x56,0xAC,0xAD,0xAF,0xAB,0xA3,0xB3,0

x93,
0xD3,0x53,0xA6,0xB9,0x87,0xFB,0x03,0x06,0x0C,0x18,0x30,0x60,0xC0,0x75,0xEA,0x21,
0x42,0x84,0xFD,0x0F,0x1E,0x3C,0x78,0xF0,0x15,0x2A,0x54,0xA8,0xA5,0xBF,0x8B,0xE3,
0x33,0x66,0xCC,0x6D,0xDA,0x41,0x82,0xF1,0x17,0x2E,0x5C,0xB8,0x85,0xFF,0x0B,0x16,
0x2C,0x58,0xB0,0x95,0xDF,0x4B,0x96,0xD9,0x47,0x8E,0xE9,0x27,0x4E,0x9C,0xCD,0x6F

,
0xDE,0x49,0x92,0xD1,0x57,0xAE,0xA9,0xA7,0xBB,0x83,0xF3,0x13,0x26,0x4C,0x98,0xC5

,
0x7F,0xFE,0x09,0x12,0x24,0x48,0x90,0xD5,0x5F,0xBE,0x89,0xE7,0x3B,0x76,0xEC,0x2D,
0x5A,0xB4,0x9D,0xCF,0x6B,0xD6,0x59,0xB2,0x91,0xD7,0x5B,0xB6,0x99,0xC7,0x7B,0

xF6,
0x19,0x32,0x64,0xC8,0x65,0xCA,0x61,0xC2,0x71,0xE2,0x31,0x62,0xC4,0x7D,0xFA,
0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0xF5,0x1F,0x3E,0x7C,0xF8,0x05,0x0A,0x14,
0x28,0x50,0xA0,0xB5,0x9F,0xCB,0x63,0xC6,0x79,0xF2,0x11,0x22,0x44,0x88,0xE5,0x3F,
0x7E,0xFC,0x0D,0x1A,0x34,0x68,0xD0,0x55,0xAA,0xA1,0xB7,0x9B,0xC3,0x73,0xE6,0

x39,
0x72,0xE4,0x3D,0x7A,0xF4,0x1D,0x3A,0x74,0xE8,0x25,0x4A,0x94,0xDD,0x4F,0x9E,0xC9

,

252

0x67,0xCE,0x69,0xD2,0x51,0xA2,0xB1,0x97,0xDB,0x43,0x86,0xF9,0x07,0x0E,0x1C,0x38,
0x70,0xE0,0x35,0x6A,0xD4,0x5D,0xBA,0x81,0xF7,0x1B,0x36,0x6C,0xD8,0x45,0x8A,0xE1

,
0x37,0x6E,0xDC,0x4D,0x9A,0xC1,0x77,0xEE,0x29,0x52,0xA4,0xBD,0x8F,0xEB,0x23,0

x46,
0x8C,0xED,0x2F,0x5E,0xBC,0x8D,0xEF,0x2B,0x56,0xAC,0xAD,0xAF,0xAB,0xA3,0xB3,0

x93,
0xD3,0x53,0xA6,0xB9,0x87,0xFB,0x03,0x06,0x0C,0x18,0x30,0x60,0xC0,0x75,0xEA,0x21,
0x42,0x84,0xFD,0x0F,0x1E,0x3C,0x78,0xF0,0x15,0x2A,0x54,0xA8,0xA5,0xBF,0x8B,0xE3,
0x33,0x66,0xCC,0x6D,0xDA,0x41,0x82,0xF1,0x17,0x2E,0x5C,0xB8,0x85,0xFF,0x0B,0x16,
0x2C,0x58,0xB0,0x95,0xDF,0x4B,0x96,0xD9,0x47,0x8E,0xE9,0x27,0x4E,0x9C,0xCD,0x6F

,
0xDE,0x49,0x92,0xD1,0x57,0xAE,0xA9,0xA7,0xBB,0x83,0xF3,0x13,0x26,0x4C,0x98,0xC5

,
0x7F,0xFE,0x09,0x12,0x24,0x48,0x90,0xD5,0x5F,0xBE,0x89,0xE7,0x3B,0x76,0xEC,0x2D,
0x5A,0xB4,0x9D,0xCF,0x6B,0xD6,0x59,0xB2,0x91,0xD7,0x5B,0xB6,0x99,0xC7,0x7B,0

xF6,
0x19,0x32,0x64,0xC8,0x65,0xCA,0x61,0xC2,0x71,0xE2,0x31,0x62,0xC4,0x7D,0xFA, 0,0,
0,
0,
0,
0,
0,
0,
0,
0, /∗ ALog4 = ALogs+3∗256 ∗/
0x1, 0x2, 0x4, 0x8, 0x9, 0xB, 0xF, 0x7, 0xE, 0x5, 0xA, 0xD, 0x3, 0x6, 0xC,
0x1, 0x2, 0x4, 0x8, 0x9, 0xB, 0xF, 0x7, 0xE, 0x5, 0xA, 0xD, 0x3, 0x6, 0xC, 0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /∗ ALog2 = ALogs+3∗256+3∗16 ∗/
1, 2, 3,
1, 2, 3, 0,0,

0,0,0,0, /∗ ALog1 = ALogs+3∗256+3∗16+3∗4 ∗/
1,
1, 0,0,

253

/∗0,0,0,0, ∗/
0,
0,
0,
0,
0,
0,
};

const int Log8[256] = {
511,0x00,0x01,0x86,0x02,0x0D,0x87,0x4C,0x03,0xD2,0x0E,0xAE,0x88,0x22,0x4D,0x93,

0x04,0x1A,0xD3,0xCB,0x0F,0x98,0xAF,0xA8,0x89,0xF0,0x23,0x59,0x4E,0x35,0x94,0x09,
0x05,0x8F,0x1B,0x6E,0xD4,0x39,0xCC,0xBB,0x10,0x68,0x99,0x77,0xB0,0xDF,0xA9,0x72,
0x8A,0xFA,0xF1,0xA0,0x24,0x52,0x5A,0x60,0x4F,0x2F,0x36,0xDC,0x95,0x32,0x0A,0x1F,
0x06,0xA5,0x90,0x49,0x1C,0x5D,0x6F,0xB8,0xD5,0xC1,0x3A,0xB5,0xCD,0x63,0xBC,0

x3D,
0x11,0x44,0x69,0x81,0x9A,0x27,0x78,0xC4,0xB1,0xE6,0xE0,0xEA,0xAA,0x55,0x73,0xD8,
0x8B,0xF6,0xFB,0x16,0xF2,0xF4,0xA1,0x40,0x25,0x42,0x53,0xE4,0x5B,0xA3,0x61,0xBF,
0x50,0xF8,0x30,0x2D,0x37,0x8D,0xDD,0x66,0x96,0x18,0x33,0xEE,0x0B,0xFD,0x20,0xD0,
0x07,0x57,0xA6,0xC9,0x91,0xAC,0x4A,0x84,0x1D,0xDA,0x5E,0x9E,0x70,0x75,0xB9,0x6C

,
0xD6,0xE8,0xC2,0x7F,0x3B,0xB3,0xB6,0x47,0xCE,0xEC,0x64,0x2B,0xBD,0xE2,0x3E,0

x14,
0x12,0x29,0x45,0x7D,0x6A,0x9C,0x82,0xC7,0x9B,0xC6,0x28,0x7C,0x79,0x7A,0xC5,0x7B,
0xB2,0x46,0xE7,0x7E,0xE1,0x13,0xEB,0x2A,0xAB,0x83,0x56,0xC8,0x74,0x6B,0xD9,0x9D

,
0x8C,0x65,0xF7,0x2C,0xFC,0xCF,0x17,0xED,0xF3,0x3F,0xF5,0x15,0xA2,0xBE,0x41,0xE3

,
0x26,0xC3,0x43,0x80,0x54,0xD7,0xE5,0xE9,0x5C,0xB7,0xA4,0x48,0x62,0x3C,0xC0,0xB4,
0x51,0x5F,0xF9,0x9F,0x31,0x1E,0x2E,0xDB,0x38,0xBA,0x8E,0x6D,0xDE,0x71,0x67,0x76,
0x97,0xA7,0x19,0xCA,0x34,0x08,0xEF,0x58,0x0C,0x4B,0xFE,0x85,0x21,0x92,0xD1,0xAD

,
};

254

const int Log4[16] = {
31, 0x0, 0x1, 0xC, 0x2, 0x9, 0xD, 0x7, 0x3, 0x4, 0xA, 0x5, 0xE, 0xB, 0x8, 0x6,

};

const int Log2[4] = {
7, 0, 1, 2,

};

const int Log1[2] = {
3, 0,

};

255

THIS PAGE INTENTIONALLY LEFT BLANK

256

REFERENCES

[1] Advanced Encryption Standard (AES), NIST Std. FIPS 197, 2001.

[2] A. Kak. (January 31, 2013) "Lecture 8: AES: The advanced encryption standard". Lecture
for class, Computer Science Department, Purdue University at West Lafayette, IN.
[Online]. Available: https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture8.
pdf.

[3] R. Smith, “Deciphering the advanced encryption standard,” Network Magazine, vol. 16,
pp. 96–101, 2001.

[4] A. Kerckhoff, “La cryptographie militaire,” Journel des Sciences Militaires, vol. IX, pp.
5–38, 1883.

[5] M. Kreuzer, “Algebraic attacks galore!” Groups Complexity Cryptology, vol. 1, no. 2, pp.
231–259, 2009.

[6] Encyclopedia Britannica, s.v. "Claude Shannon". [Online]. Available: http://www.
britannica.com/EBchecked/topic/538577/Claude-Shannon.

[7] C. E. Shannon, “Communication theory of secrecy systems,” Bell System Technical Jour-

nal, vol. 28, no. 4, pp. 656–715, 1949.

[8] H. Raddum and I. Semaev, “Solving MRHS linear equations,” in Proc. of WCC, 2007, pp.
323–332.

[9] J. B. Fraleigh, A First Course in Abstract Algebra, 7th ed. New York City, NY: Addison-
Wesley, 2002.

[10] G. Chartrand and P. Zhang, Introduction to Graph Theory. Boston, MA: McGraw Hill
Higher Education, 2005, ch. 1-7.

[11] B. Schneier and P. Sutherland, Applied Cryptography: Protocols, Algorithms, and Source

code in C. Somerset, NJ: John Wiley & Sons, 1995.

[12] RSA official website. [Online]. Available: http://www.rsa.com/rsalabs/

257

[13] Department of Commerce, National Institute of Standards and Technology. (1997,
Jan) Announcing development of federal information processing standard for advanced
encryption standard. [Online]. Available: http://csrc.nist.gov/archive/aes/pre-round1/aes_
9701.txt

[14] J. Nechvatal, E. Barker, D. Dodson, M. Dworkin, J. Foti, E. Roback et al., “Status report
on the first round of the development of the advanced encryption standard,” Journal Of

Research of the National Institute of Standards and Technology, vol. 104, no. 5, pp. 435–
460, 1999.

[15] C. Sybrandy, J. MacDonald et al., “Public comments regarding the advanced encryp-
tion standard (AES) development effort round 2.” [Online]. Available: http://csrc.nist.gov/
archive/aes/index.html

[16] Public comments regarding the advanced encryption standard AES on round 1. [Online].
Available: http://csrc.nist.gov/archive/aes/index.html.

[17] W. Stallings, Cryptography and Network Security, 5th ed. Boston, MA: Pearson Educa-
tion India, 2011.

[18] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced encryption standard.
New York City, NY: Springer, 2002.

[19] C. Cid, S. Murphy, and M. Robshaw, Algebraic Aspects of the Advanced Encryption Stan-

dard. Springer New York, 2006.

[20] ——, “Small scale variants of the AES,” in Fast Software Encryption, vol. 3557. Springer,
2005, pp. 145–162.

[21] N. Ferguson, R. Schroeppel, and D. Whiting, “A simple algebraic representation of rijn-
dael,” in Selected Areas in Cryptography. Springer, 2001, pp. 103–111.

[22] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient algorithms for solving
overdefined systems of multivariate polynomial equations,” in Advances in Cryptol-

ogy—EUROCRYPT 2000. Springer, 2000, pp. 392–407.

[23] A. Kipnis and A. Shamir, “Cryptanalysis of the HFE public key cryptosystem by relin-
earization,” in Advances in cryptology—CRYPTO’99. Springer, 1999, pp. 788–788.

258

[24] N. T. Courtois and J. Pieprzyk, “Cryptanalysis of block ciphers with overdefined systems
of equations,” in Advances in Cryptology—ASIACRYPT 2002. Springer, 2002, pp. 267–
287.

[25] J. C. Faugère, “A new efficient algorithm for computing gröbner bases (F4),” Journal of

Pure and Applied Algebra, vol. 139, no. 1, pp. 61–88, 1999.

[26] ——, “A new efficient algorithm for computing gröbner bases without reduction to zero
(F5),” in Proc. of the 2002 international symposium on Symbolic and algebraic computa-

tion. ACM, 2002, pp. 75–83.

[27] A. Kaminsky, M. Kurdziel, and S. Radziszowski, “An overview of cryptanalysis research
for the advanced encryption standard,” in MILITARY COMMUNICATIONS CONFER-

ENCE, 2010-MILCOM 2010. IEEE, 2010, pp. 1310–1316.

[28] A. Bogdanov, D. Khovratovich, and C. Rechberger, “Biclique cryptanalysis of the full
AES.” Springer, 2011, pp. 344–371.

[29] T. E. Schilling and H. Raddum, “Solving equation systems by agreeing and learning,” in
Arithmetic of Finite Fields. Springer, 2010, pp. 151–165.

[30] K. Matheis, “An algebraic attack on block ciphers,” Ph.D. dissertation, Flordia Atlantic
University, 2010.

[31] S. Simmons, “Algebraic cryptanalysis of simplified AES,” Cryptologia, vol. 33, no. 4, pp.
305–314, 2009.

[32] E. Kleiman, “High performance computing techniques for attacking reduced version of
AES using XL and XSL methods,” Ph.D. dissertation, Iowa State University, 2010.

[33] S. Bulygin and M. Brickenstein, “Obtaining and solving systems of equations in key vari-
ables only for the small variants of AES,” Mathematics in Computer Science, vol. 3, no. 2,
pp. 185–200, 2010.

[34] M. Brickenstein and A. Dreyer, “PolyBoRi: A framework for gröbner-basis computations
with boolean polynomials,” Journal of Symbolic Computation, vol. 44, no. 9, pp. 1326–
1345, 2009.

[35] N. AlFardan and K. Paterson, “Lucky thirteen: Breaking the TLS and DTLS record pro-
tocols,” 2013.

259

[36] A. Greenberg. Cryptographers demonstrate new crack for common web en-
cryption. [Online]. Available: http://www.forbes.com/sites/andygreenberg/2013/03/13/
cryptographers-show-mathematically-crackable-flaws-in-common-web-encryption/.

[37] J. Daemen, L. Knudsen, and V. Rijmen, “The block cipher Square,” in Fast Software

Encryption. Springer, 1997, pp. 149–165.

[38] ——, “Implementation of square,” 1997. [Online]. Available: http://www.esat.kuleuven.
ac.be/~rijmen/square.

[39] V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. De Win, “The cipher SHARK,”
in Fast Software Encryption. Springer, 1996, pp. 99–111.

[40] P. S. L. M. Barreto. The anubis block cipher. [Online]. Available: http://www.larc.usp.br/
~pbarreto/AnubisPage.html.

260

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

261

	Introduction
	Problem Background
	Overview

	Background
	Algebraic Background
	Graph Theoretic Background
	Cryptographic Background

	Advanced Encryption Standard (AES)
	AES Structure
	Representation
	Solving Methods

	MRHS
	Representation
	Agreeing
	Gluing
	Extracting
	Guessing
	Experimental Results

	Extending MRHS Methods
	Representation
	Notation
	Graphical Representation
	Links
	Multi-Agreeing

	Results
	Results of New Method
	Modeling Large Variants of AES
	Other AES Results
	Multiple Plaintext/Ciphertext Pairs

	Other Cryptosystems
	Square
	Shark
	Anubis

	Conclusion
	Contributions
	Future Research

	Appendices
	Pseudo-Code for Multi-agree
	Agreeing Order for A44e
	AES MRHS Equation Creation Code
	AES MRHS Algorithm Code
	Square MRHS Equation Creation Code
	Square MRHS Algorithm Code
	List of References
	Initial Distribution List

